
Zachary D. Sisco Research Statement

My research sits at the intersection of computer architecture (designing chips) and programming
languages (the tools we use to implement them). Modern chip design embodies enormous complexity,
from general-purpose processors to specialized hardware accelerators. With the trend towards
specialization, chip designers need techniques that let them quickly iterate over a design and fit
into familiar languages and tools. However, designing a chip with speed and robustness remains a
challenge, particularly for smaller teams who are increasingly entering the field. Compounding these
challenges, hardware description languages (HDLs) are the core driver for chip development, which
bear the burden of complexity. As a result, industry studies show roughly half of chip development
time is spent on verification [1].

During my PhD, I have led research that improves design tools for agile chip design. My work
opens two entirely new areas in the hardware design space and enables two novel design processes
based around increasing developer productivity with correctness guarantees. The solutions I
present in my research make verifiability a first-class constraint through the use of solver-aided
programming languages techniques which provide formal guarantees through the integration
of automated theorem provers and constraint solvers. Further, the techniques I developed are not
mere prototypes; they integrate with existing open-source and industry-standard languages and
tools, shortening the design process without increasing the verification burden. Given the extremely
high cost of chip design, this research will reduce the cost and effort required to work in this area.

Next, I briefly summarize my two major contributions. As my research has opened two new
areas in the hardware design space, there is much more to do in these areas as well as further areas
to open up. The “golden age” of computer architecture [2] offers an opportunity to advance the
design of open computing architectures and specialized hardware. However, we can only realize this
if we improve the languages and tools that chip designers use. My research will move the field in
this direction by integrating formal methods into open-source languages that reason about not only
correctness, but energy, performance, and security.

Control Logic Synthesis

Final
Design

Abstraction

Control

Function
Logic
Synthesis

Datapath Sketch

Human in-the-loop

Specification

Figure 1: Overview of the technique.

Chip design requires reasoning between different lay-
ers of abstraction: from an architectural specification
(the instructions the chip executes), to the microar-
chitectural datapath (the functional units), down to
the low-level control logic (which coordinates compu-
tation on the chip). Implementing control logic itself
is tedious and error-prone, where changes at these
levels propagate non-obvious changes to the control.
This work, recently accepted for publication at ASPLOS [9], introduces a new technique, control
logic synthesis, which automatically generates the control logic for a datapath according to an
architectural specification (illustrated in Figure 1). To my knowledge, this work is the first to
automatically generate control logic in a correct-by-construction way.

The insight is adapting program synthesis techniques to HDLs, bridging the gap between the
datapath and the high-level specification—a key direction I previously identified [7]. This technique
allows chip developers to freely modify and iterate over the designs of both the specification and
the datapath without getting caught up in the abstruse details of control, as I show in case studies
covering embedded-class RISC-V cores and accelerators geared for cryptographic applications.

I was awarded silver in the ACM Student Research Competition at PLDI for an initial presentation
of this work. Further, I mentored six junior students in this work, who contributed to the published
paper as well as future efforts to enable control logic synthesis on more complex architectures. These

1



Zachary D. Sisco Research Statement

future efforts require advancing the state of the art in automated code generation for hardware and
designing new languages enabled by control logic synthesis.

Hardware Decompilation

Where my first project applies program synthesis to hardware generation, my second project moves
in the reverse direction, opening a new area called hardware decompilation. The idea is analogous to
software decompilation—lifting a binary back to source code—except it analyzes a gate-level circuit
represented as a graph called a netlist. Nobody prior had raised designs from the abstraction level
of a gate-level netlist to high-level HDL code. This entirely new area opened up in my research
helps developers by accelerating analyses such as simulation and enables unique design processes
such as automated technology re-targeting. In my work published in PLDI 2023, I focus on one
aspect of the problem: recognizing repeated logic in netlists and decompiling it into looping HDL
code (as illustrated in Figure 2), termed hardware loop rerolling [8]. This work adapts programming
languages techniques to the hardware domain to analyze netlists for repeated logic. Then, using a
bespoke intermediate language, the hardware decompiler automatically generates looping HDL code
that is semantically equivalent to the original netlist (proven so using an SMT solver).

Figure 2: Hardware loop rerolling.

Continuing this work I have mentored nine stu-
dents, including three MS students as part of their
theses, and one high school student through a sum-
mer research program. I currently have two papers
under review addressing two more HDL abstractions
beyond loops: standard module libraries [13], and
memories [10]. Underpinning each new direction is
a key programming language insight that enables
hardware decompilation in a principled way. Recovering instances of modules from a standard
library inside a gate-level netlist follows an inductive bottom-up merging technique guided by a
type system describing generic library components. Memory decompilation follows a rewrite-driven
approach where I developed an equational theory that encodes memory semantics into algebgraic
rewrite rules. The benefit is that the term rewrites are bidirectional and so this approach enables not
just decompilation but “re-compilation,” porting a design targeted for one technology to another.

Future Directions

I identify three areas of focus for my research program, outlined below. In each of these new thrusts
I will develop new solver-aided programming techniques to address verifiability challenges in HDLs
and open up new approaches to chip design.

Correct-by-construction chips from formal specifications. One of the insights of control logic
synthesis is integrating architecture-level constraints into the generation of correct-by-construction
HDL code. The long-term goal is to develop techniques that fully derive HDL code implementations
for entire chips from formal architectural specifications, where compilation proceeds as a series of
proof-carrying refinements moving down the layers of abstraction from the architecture-level to the
microarchitecture, all the way to hardware. I have already outlined the theoretical foundations of
this refinement process [6]. The insight is that effects at the architecture and microarchitecture levels
can be viewed as monadic stream functions enabling correct-by-construction automated refinement
of a circuit implementation from formal specifications.

2



Zachary D. Sisco Research Statement

This process works by abstracting microarchitectural optimizations and relating them to refine-
ments as part of the compilation process. In support of this, there has been research into HDLs
that encode microarchitectural information at the implementation level to create pipelines that
obey timing constraints and avoid hazards [14, 5, 3]. However, these approaches place the burden
on the programmer to write the appropriate types and have no integration with an architectural
specification (foregoing formal verification). I envision that from the designer’s perspective, these
refinements are simply invoked as compiler passes. While at Galois, I did such research on correct-by-
construction hardware generation focused on deriving automatically pipelined designs from formal
specifications. Beyond automated pipelining, we need techniques that can derive many classes of
microarchitecture-level optimizations to synthesize correct and performant chips.

Semantics-preserving EDA tools. Current HDL compilers and synthesis tools are decoupled,
where synthesis passes have less semantic information to inform technology mapping and logic
optimizations, and often need to recover lost information at the gate level. I am collaborating with
researchers at the University of Washington to integrate state-of-the-art term rewriting systems
to address challenges in EDA toolchains [11]. I am developing new languages for reasoning about
hardware, powered by equational theories to rewrite designs according to cost functions—e.g.,
optimizing for power/area with compilation, or abstraction level for decompilation. I envision
new open-source HDL compilers and synthesis tools which preserve design hierarchy through
expressive type systems, exposing higher-level semantics (which are normally lost) to optimize
downstream synthesis passes. My insights in developing hardware decompilers show how we can
enrich synthesis tools by preserving higher-level abstractions during HDL compilation to increase
developer productivity.

Enriching hardware/software interfaces. Besides general-purpose computing, there are other
aspects of the hardware/software interface such as communication and data-movement protocols
[4], and hardware accelerators that speed up specialized computation and system services [12].
The difficulty in using these interfaces lies in the development process; current languages and
libraries do not provide the machinery to guide programmers to correctly use them. Further, these
interfaces run through the whole hardware/software stack, encountering constraints through each
layer. Characterizing these interfaces as abstractions found in programming language theory, I will
develop new compilers that bridge the hardware/software interface at these new frontiers to ensure
correctness of the use of—and even the automated synthesis of code using—these interfaces through
symbolic reasoning and constraint solvers. My past work in control logic synthesis paves the way for
exploring these new interfaces, assisting the programmer in reasoning about specialized hardware
where they may have limited understanding.

Research funding. To deepen the work on hardware decompilation, I co-authored a grant
proposal for an NSF Formal Methods in the Field (FMitF) grant. To fund my research program,
I will pursue this and other NSF programs such as Secure and Trustworthy Cyberspace (SaTC),
Principles and Practice of Scalable Systems (PPoSS), and Software and Hardware Foundations
(SHF). I have also made connections with a US national laboratory and an industry research
company who are interested in using the techniques developed in my research to solve problems
in verified hardware design and indicated willingness to fund this work. Following my extensive
experience mentoring undergraduates, I will also seek research funding to continue fostering research
opportunities for undergraduates.

3



Zachary D. Sisco Research Statement

References
[1] H. Foster. Wilson research group functional verification study.

2020. https://blogs.sw.siemens.com/verificationhorizons/2020/10/27/
prologue-the-2020-wilson-research-group-functional-verification-study.

[2] J. L. Hennessy and D. A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM
62, 2 (February 2019), 48–60. doi:10.1145/3282307.

[3] M. Jang, J. Rhee, W. Lee, S. Zhao, and J. Kang. Modular Hardware Design of Pipelined Circuits with
Hazards. In PLDI 2024. doi:10.1145/3656378.

[4] H. Lu, Y. Xing, A. Gupta, and S. Malik. SoC Protocol Implementation Verification Using Instruction-Level
Abstraction Specifications. ACM Trans. Des. Autom. Electron. Syst. 2023. doi:10.1145/3610292.

[5] R. Nigam, P. H. A. de Amorim, and A. Sampson. Modular Hardware Design with Timeline Types. In
PLDI 2023. doi:10.1145/3591234.

[6] H. Kringen, Z. D. Sisco, J. Balkind, T. Sherwood, and B. Hardekopf. Semi-Automated Translation of
a Formal ISA Specification to Hardware. Programming Languages for Architecture (PLARCH) 2023.
https://pldi23.sigplan.org/home/plarch-2023.

[7] Z. D. Sisco, J. Balkind, T. Sherwood, and B. Hardekopf. A Position on Program Synthesis for Processor
Development. Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE) 2022.
https://capra.cs.cornell.edu/latte22/paper/1.pdf.

[8] Z. D. Sisco, J. Balkind, T. Sherwood, and B. Hardekopf. Loop Rerolling For Hardware Decompilation.
In PLDI 2023. doi:10.1145/3591237.

[9] Z. D. Sisco, A. D. Alex, Z. Ma, Y. Aghamohammadi, B. Kong, B. Darnell, T. Sherwood, B. Hardekopf,
and J. Balkind. Control Logic Synthesis: Drawing the Rest of the OWL. In ASPLOS 2024, Volume 4 (to
appear). doi:10.1145/3622781.3674170.

[10] Z. D. Sisco, D. Petrisko, J. Xia, V. Rao, S. Wang, B. Hardekopf, and J. Balkind. A Memory Design
Language for Automated Memory Technology Mapping. Under review, 2024.

[11] G. H. Smith, Z. D. Sisco, T. Techaumnuaiwit, J. Xia, V. Canumalla, A. Cheung, Z.
Tatlock, C. Nandi, and J. Balkind. There and Back Again: A Netlist’s Tale With Much
Egraphin’. Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE) 2024.
https://capra.cs.cornell.edu/latte24/paper/8.pdf.

[12] T. Wei, N. Turtayeva, M. Orenes-Vera, O. Lonkar, and J. Balkind. Cohort: Software-Oriented Acceleration
for Heterogeneous SoCs. In ASPLOS 2023, Volume 3. doi:10.1145/3582016.3582059.

[13] J. Xia, Z. D. Sisco, S. Vasishta, J. Balkind, and B. Hardekopf. Mycelium: Module Finding with
Functional Netlist Representation. Under review, 2024.

[14] D. Zagieboylo, C. Sherk, G. E. Suh, and A. C. Myers. PDL: a high-level hardware design language for
pipelined processors. In PLDI 2022. doi:10.1145/3519939.3523455.

4

https://blogs.sw.siemens.com/verificationhorizons/2020/10/27/prologue-the-2020-wilson-research-group-functional-verification-study
https://blogs.sw.siemens.com/verificationhorizons/2020/10/27/prologue-the-2020-wilson-research-group-functional-verification-study
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3656378
https://doi.org/10.1145/3610292
https://doi.org/10.1145/3591234
https://pldi23.sigplan.org/details/plarch-2023-papers/17/Semi-Automated-Translation-of-a-Formal-ISA-Specification-to-Hardware
https://capra.cs.cornell.edu/latte22/paper/1.pdf
https://doi.org/10.1145/3591237
https://www.zsisco.net/papers/control-logic-synthesis.pdf
https://capra.cs.cornell.edu/latte24/paper/8.pdf
https://doi.org/10.1145/3582016.3582059
https://doi.org/10.1145/3519939.3523455

	Control Logic Synthesis
	Hardware Decompilation
	Future Directions
	References

