Scheme2Beam

Harlan Kringen and Zach Sisco

CS 263 — Spring 2020

1 Introduction

The A-calculus is a foundational model of computa-
tion which has inspired functional programming lan-
guages like Lisp and Scheme. It is well understood
and we feel confident in using it in our research. How-
ever, there is an analogous model of computation
situated in the parallel and concurrent world. We
have recently become interested in this mirror world,
which has led us to the w-calculus, and subsequently
to Erlang, a language very much inspired by the -
calculus.

A language’s runtime environment is a critical com-
ponent in understanding this analogous computation
model since much of what constitutes parallel and
concurrent behavior takes place in real time, during
program execution. To gain a better understanding
of the runtime environment we decided to write a
translation from a A-calculus-like language to a -
calculus-like language, which directly addresses the
concurrent world. Concretely, this translation is a
source compiler taking Scheme to Erlang, which op-
tionally autogenerates a parallelized version of the
source code.

2 Contributions

In this project, we wrote a source compiler translat-
ing a subset of the Scheme language into a language
that runs on the Erlang VM, or BEAM. We also de-
veloped an IR pass for our compiler which attempts
to parallelize code based on a translation given by
Robin Milner [1], mapping the A-calculus to the -
calculus. Our compiler targets not Erlang directly,
but an intermediate language in the Erlang toolchain

known as Core Erlang. This language proved to be
a simpler translation target than Erlang itself, and
there is a tradition of building languages on top of
Core Erlang, such as Elixir. Our source compiler
is written in OCaml and relies on only one exter-
nal library, totaling a very manageable 700 lines of
code. We wrapped our compiler in a simple com-
mand line tool called $2B which can dumps to file
the Core Erlang, which can then be readily com-
piled to BEAM bytecode. After we finished writing
the source compiler, we saw our optional paralleliza-
tion pass as ”completing the circuit” shown in Figure
1. We were familiar with Robin Milner’s theoretical
translation, and we knew we had concrete implemen-
tations of the constituent parts, so we simply wanted
to see if we could provide the concrete implementa-
tion of the translation as a whole.

3 Background

Erlang is a programming language made for design-
ing fault-tolerant systems. It comes with built-in
primitives for reasoning about parallelism and con-
currency. To understand how to write a source com-
piler that targets the Erlang VM, we give a brief de-
scription of its compiler toolchain.

At a high level, the flow of the Erlang compiler is
from source code to BEAM bytecode. Erlang source
code is first transformed into an abstract syntax tree
called the Erlang abstract format. The Erlang ab-
stract format is then converted to Core Erlang, an
intermediate representation (IR) used by the com-
piler for optimizations and program analyses. (See
Section 4.2 for more discussion on Core Erlang.) Af-
ter the Erlang compiler performs optimizations and

Milner's Translation

Lambda - Pi calculus

calculus ‘

Scheme . Core
Erlang

Scheme2Beam

Figure 1: Diagram of translations from A-calculus to w-calculus, from Scheme to Erlang, and where our

project fits in.

other program transformations over Core Erlang, it
finally compiles down to BEAM bytecode.

There is no official specification of Core Erlang.
The only reliable reference is the latest source code
in the Erlang compiler. We relied on this closely for
specifying Core Erlang in OCaml. There are about 30
syntactic constructs that make up Core Erlang. Since
we are writing a source compiler for Scheme, we actu-
ally did not need to implement every single construct,
only the ones necessary for expressing Scheme. In the
end, we ended up implementing 20 of the 30 language
constructs.

4 Implementation

4.1 Scheme as a Source Language

As a descendent of the Lisp family of languages,
Scheme employs a syntax style known as s-
expressions which constitutes a simple, formal gram-
mar consisting of atomic tokens and lists of atomic
tokens (recursively). This format makes parsing the
raw string format of Scheme relatively straightfor-
ward and also fits well within the strengths of the
OCaml language.

While the tokenizing phase gives us a simple ab-
stract syntax tree, we must imbue this format with
a semantics closer to our target language. Before we
can generate concrete Core Erlang, we need our own
version of abstract Core Erlang. To this end, we cre-
ated our own representation of abstract Core Erlang

using OCaml algebraic data types. Because of this,
the code generation became a simple recursive tree
traversal.

Parsing Scheme into our internal representation re-
quired towing the line between bare parsing and ac-
tual evaluation. The Erlang language exposes some
facets of the AST to the user in the concrete syntax,
such as requiring the number of function parameters
to be specified directly in the definitions. This re-
quired the parsing phase to maintain a type of symbol
table in which we could store more detailed informa-
tion about the code during parsing and code gener-
ation. We anticipate that there are unique gains in
breaking this parsing phase out into possible further
passes that perform symbolic execution or some other
optimization.

This parsing traversal is largely responsible for gen-
erating concrete Core Erlang and it constitutes the
main utility of our compiler. We do however, as we
explain in subsequent sections, perform another IR
pass, modifying the Core Erlang AST in an attempt
to parallelize the original source program.

4.2 Core Erlang as a Target Language

Most high-level language constructs in Erlang source
code compile down to sequences of function defini-
tions and applications, case statements, guards, and
let bindings in Core Erlang. Being a smaller lan-
guage (but still higher level than BEAM bytecode),
Core Erlang is an ideal IR for our source compiler.
Other language designers have noted this compatibil-

Scheme

Core
Program

Erlang
Code gen

Parser

—| TEiEl L

BEAM
bytecode

Parallelization

Figure 2: Source compiler process flow.

ity as well, such as Elixir, which compiles its source
language to Core Erlang.

As we have referenced, Core Erlang has two syn-
tactic representations: concrete and abstract. For ac-
tually performing program transformations over Core
Erlang, the compiler uses the abstract representation,
which specifies Core Erlang as a data type over all
syntactic keywords and constructs in the language.
The compiler uses the concrete representation to emit
human readable Core Erlang.

The backend of our source compiler must handle
both representations of Core Erlang, the abstract
syntax to map parsed Scheme to constructs in Core
Erlang, and the concrete syntax to emit valid Core
Erlang. As an example, Listings 1 and 2 show a fac-
torial function written in Scheme and its correspond-
ing concrete Core Erlang. The overall pipeline of our
compiler can be see in Figure 2.

4.2.1 Generating Concrete Core Erlang

To generate Core Erlang, we relied mostly on header
comments in the Core Erlang source code, and our
own hand-written Erlang examples that we compiled
down to Core Erlang. Although not perfect, this in-
formed us how to format concrete Core Erlang in
order to be accepted by the Erlang compiler.

Given that there is no formal specification of Core
Erlang, we were limited in how we verified the cor-
rectness of generated Core Erlang. The best assur-
ances we have is that our unit tests are accepted by
the Erlang compiler, successfully compile down to
BEAM bytecode, and can be run on the BEAM.

(define (factorial n)
(if (< n 1)
1
(¥ n (factorial (- n 1)))))

Listing 1: Factorial function written in Scheme.

module ’factorial’ [’factorial’/1]
attributes []
>factorial’/1 = fun (_n) ->

case <> of

<> when call ’erlang’:’<’(_n,1)

->
1
<> when ’true’ ->
call ’erlang’:’*’(_n,apply

’factorial’/1(call
’erlang’:’-’(_n,1)))
end

end

Listing 2: Scheme factorial function translated to
Core Erlang.

4.3 Functions as Processes

At this point, our compiler can take Scheme code and
run it on the BEAM; however, we have not yet ad-
dressed Erlang’s primitives for concurrency. Vanilla
Scheme cannot express these directly so we need to
take some cues from the theory of concurrent sys-
tems. As we mentioned in the introduction, the 7-
calculus is an analogue to the A-calculus that ex-
presses computations in terms of processes commu-

nicating over named channels, essentially swapping
the abstraction of a ”function” for the abstraction of
a "process.” Robin Milner showed, surprisingly, that
there is a way to transform non-parallel A-calculus
expressions, such as our Scheme source code, to a
parallel version in the m-calculus [1]. Since it has the
same basic features and properties, we will substitute
the m-calculus for Core Erlang.

To implement the translation, we developed an op-
tional pass over the Core Erlang AST. The transla-
tion itself works by rewriting the three rules behind
the A-calculus into corresponding expressions in the
w-calculus. The three rules concern: (1) closed terms,
which can be thought of as atomic, primitive expres-
sions; (2) lambda abstractions, which can be recog-
nized as function definitions; and finally (3) appli-
cations, which are the result of substituting lambda
expressions into parameters named in an application.

A translation from these into m-calculus is not en-
tirely obvious. In most treatments there is little time
spent on motivating the intuition for the m-calculus
expressions, and working them out on paper is essen-
tial. The takeaway is simply that these three rules
become sequences of processes communicating over
named channels. Closed terms can be thought of as
sending their value as a channel. Abstractions can
be seen as receiving data on a channel and then re-
broadcasting it on another channel. Applications are
responsible for setting up multiple processes to scaf-
fold the actual reduction of expressions.

We instituted the translation pass as a walk over
the Core Erlang AST, matching against atomic
terms, abstractions and applications, and inserting
the send and receive code based on the translation.
For instance, having parsed the AST, we know how
many functions there are and of what arity. Given
that the translation splits function applications into
a few parallel processes, we know we need to gener-
ate top-level spawn functions and store their process
ids. We know abstractions and applications require
sending information on channel names, so we traverse
to those points in the code and insert the sends and
receives to the appropriate process ids.

While the above explanation is somewhat cursory,
we give an example translation of the identity func-
tion into its parallel version in Listing 3 and List-

ing 4. The second listing shows the multiple spawn
calls needed to create processes, as well as how the
functions were translated into code that sends and
receives their values. Compiling this code to BEAM
bytecode and running it on the BEAM results in the
number 3117 as output.

(define (id x) x)
(define (rumn) (id 3117))
Listing 3: Identity function written in Scheme.
module ’id2°’ [’id’/0,’run’/0]
attributes []
’id’/0 = fun () ->
receive
<{X,R}> when ’true’ ->
do
call ’erlang’:’!’(R,X)
apply ’id’/0(0)
after ’infinity’ ->
’true’
’run’/0 = fun () ->
let <Lhs_id> =
call ’erlang’:’
spawn’ (’id2’,’id’, [])
in
let <_recv@2> =
fun () ->
receive
<X> when ’true’ ->
X
after ’infinity’ ->
’true’
in
let <Rhs_id> =
call
’erlang’:’spawn’(_recv@2)
in
call ’erlang’:’!’
(Lhs_id ,{3117,Rhs_id})
end
Listing 4: Scheme identity function parallelized

according to Milner’s m-calculus encoding and
translated to Core Erlang.

5 Discussion

In reflecting on the project as a whole there a few
things worth noting. First, the choice to use OCaml
as our source compiler language resulted in several
trade-offs. Erlang appears to be a natural choice for
writing a source compiler for a language to Erlang’s
VM. The biggest advantage is that the source com-
piler does not need to specify and reimplement Core
Erlang. Language designers can directly use the Core
Erlang source code files from the Erlang compiler in
their implementation. From a language runtime per-
spective, this choice also simplifies the runtime envi-
ronment since users only rely on the Erlang ecosystem
for development.

On the other hand, we chose OCaml because it is
a language we are both familiar with—especially for
writing compilers, interpreters, and program analy-
ses. Given the time frame for the project, we felt we
would be most productive using a language we are
more familiar with, rather than adding more ramp-
up time to learn how to write a compiler in Erlang.
From a learning perspective, having to specify and
implement the abstract and concrete representations
of Core Erlang in OCaml taught us a lot about the
internals of Erlang and was an unexpected benefit.

As for the second half of our project, implementing
Robin Milner’s translation, there were two main dif-
ficulties. The first challenge was understanding the
”why” of how it works. We were only able to validate
a small example used in the original paper, namely
the identity function. Part of this difficulty results in
the way Robin Milner employs syntactic substitution
over expressions intermixed in the actual reduction
semantics. It quickly became too complicated to ver-
ify for larger examples without implementing a full-
blown 7-calculus interpreter. Nevertheless, we found
Vasconcelos [2] to be an excellent resource for learn-
ing about the language and its translation. The sec-
ond difficulty concerned the actual implementation of
the pass in OCaml. We came up with a few different
ways of organizing how processes are spawned and
how channel names are generated and transferred. It
is not clear we chose a scalable solution and this could
be worth revisiting.

6 Future Directions

Our project mainly demonstrates two observations.
The first is that writing a source compiler target-
ing the BEAM is fairly painless. While the Core
Erlang error messages are opaque, debugging non-
compliant Core Erlang code never required too much
effort. Moving from Scheme was, as expected, a
breeze, given its easily parseable syntax and its func-
tional programming semantics. The second obser-
vation contrasts strongly with the first, however, in
that we found it to be very difficult to follow Robin
Milner’s translation from the A-calculus to the m-
calculus. Going forward we would like to gain confi-
dence in our approach and then translate more com-
plicated programs into m-calculus versions in Core Er-
lang.

To this end we would like to explore the actual
behavior at runtime of our parallelized versions. In-
tuitively, turning a sequential program into multiple
processes sending and receiving data bears a concep-
tual resemblance to the continuation passing trans-
form. It would then be interesting to see if there is
any impact on performance, or if the translation high-
lights actual opportunities for more traditional paral-
lelization. Incorporating what we’ve learned into our
PL toolboxes is a distinct ongoing interest of ours.

References

[1] R. Milner. Functions as processes. Mathemati-
cal structures in computer science, 2(2):119-141,

1992.

[2] V. T. Vasconcelos. The call-by-value A-calculus,
the secd machine, and the m-calculus. Techni-
cal Report TR-00-3, Department of Informatics,
University of Lisbon, May 2000.

