
Investigations into a Separating-typed Language

Mehmet Emre, Harlan Kringen, Zachary Sisco

1 Introduction

In this project we explore connections between linear logic and separation logic
through linearly-typed λ-calculus with explicit malloc/free-style memory man-
agement. Separation logic (sometimes called bunched logic) is propositional
logic extended with separating connectives (∗ and −∗), which describe how
propositions (usually some kind of program resource like heap memory) can be
separated into disjoint regions and hold true within each. Separation logic has
been used to reason about memory models (malloc/free and garbage-collected
languages), concurrency models, and amortized resource analysis [3].

The first work to explore the Curry-Howard correspondence between sepa-
ration logic and a type system was with bunched typing [2, 4]. Bunched typing
provides a language with the ability to handle both additive pairs and functions
(∧ and →) as well as multiplicative pairs and functions (∗ and −∗). There are
subtle differences between corresponding types in linear and bunched types in
terms of how resources are shared/used. For instance, a linear function type
describes a function that uses its arguments exactly once. The corresponding
function type −∗ from separation logic denotes a function that does not share
its store with its arguments. Similarly, the separating pair type ∗ describes a
pair whose components do not interfere with each other.

Our project takes cues from [2, 4] but with a different approach to the se-
mantics, typing rules, and proofs. Rather than express the semantics of the
language in denotational semantics [4], we use operational semantics to make
our formalisms more amenable to implementation as well as for syntactic proofs
of progress and preservation. Additionally, instead of designing the language in
continuation-passing style [2] we take a direct-style approach.

2 Syntax

Our syntax (Figure 1) follows the usual terms found in the λ-calculus with pairs
but with the addition of terms for explicit memory management—alloc and gaf
(for allocate and get-and-free, respectively). Figure 2 defines evaluation contexts
and other run-time data.

1

e ∈ Expr ::= n ∈ N | b ∈ B | x ∈ Variable | ` ∈ Location | q 〈e1, e2〉
| q λ x:τ. e | e1 e2 | let x = e1 in e2 | split e1 as x, y in e2

| ite e e1 e2 | alloc e | gaf e
p ∈ PreType ::= num | bool | τ1 ∗ τ2 | τ1 −∗ τ2

τ ∈ Type ::= q p

q ∈ Qual ::= lin | non

Figure 1: The syntax. Note that types consist of linearity qualifiers and pre-
qualified types.

E ∈ EvalCtx ::= [] | E e | v E | q 〈E, e〉 | q 〈v,E〉 | let x = E in e

| split E as x, y in e | ite E e1 e2 | alloc E | gaf E
v ∈ Value ::= n | b | ` | non λx:τ. e | non 〈v, v〉
σ ∈ Store ⊆ Location→ Value

Figure 2: The run-time data: evaluation contexts, values, and stores.

3 Semantics

Figure 3 defines the substitution function used by our operational semantics.
We define disjoint union over stores as:

(σ1 ⊕ σ2)(`) =

{
σ1(`) ` ∈ dom(σ1)
σ2(`) ` ∈ dom(σ2)

⊕ is undefined if domains of σ1 and σ2 are not disjoint. Our definition of ⊕
is commutative and associative (it is similar to p, q defined in Section 4).

Figure 4 gives small-step operational semantics for our programming lan-
guage. Here, we denote substituting the [] with e in evaluation context E as
E[e].

Our semantics is two-fold: we interpret linear values as references to the
store and use abstract machine semantics to reason about these references. The
type system we introduce in the next section will ensure that the linear values
hold unique references. As for nonlinear values, we use substitution semantics
and we treat them as values that cannot reference the store. The E-Split and
E-App rules deal with nonlinear values.

Our language also has safe manual memory management through alloc ,
gaf , linear pair and function constructors (which are not values), and the E-
SplitLin and E-AppLin rules. The last four mechanisms operate in a way

2

similar to David Walker’s presentation of linearly-typed λ-calculus. Our addi-
tion of alloc and gaf allows the programmer to move complex data structures
to the store without re-constructing them. In our formulation, the semantics of
the last four mechanisms can be seen as fusion of alloc and gaf with pair and
function construction/deconstruction.

The reason we have both alloc and gaf and the existing methods is that
alloc can allocate only clonable values1 and gaf can free and retrieve only
clonable values as well.

3.1 Possible extensions

We considered certain extensions to showcase applications of algorithmic linear
type systems to reason about separation, and designed our type system with
them in mind. However, due to time constraints we could not finish the proofs
for the following extensions we had in mind:

1. Parallel processing: we designed our language and type system so that we
can prove that two sub-expressions do not share the store. Then, we could
evaluate them concurrently without race conditions. Proving this turned
out to be tricky because the allocation order may be different leading to
different stores under different executions and we needed some sort of store
isomorphism.

2. Swapping/re-assigning references without consuming them. Our store typ-
ings turned out to be not expressive enough to allow swapping a location
with a new value (e.g., swap e1 e2 with the expected meaning). We enter-
tained several variations of the swap expression and concluded that fusing
swap and let could be a viable solution (similar to how [2] can handle
assignment because they work on programs in continuation-passing style)
however we could not modify our theorems in time to accommodate swap.

4 Typing Rules

We define the following contexts to reason about variables and locations in our
type system:

Γ : Variable→ Type Typing context

Σ : Location→ Type Store typing

Γ and Σ carry the information about types of variables and locations. We
denote the empty map via · and we denote a single-element map

We define the operator p, q over maps as pointwise concatenation (here,
λx. . . . denotes a mathematical partial function, it is not syntax of our language):

1values that do not contain linear references inside

3

e[x 7→ v]

n[x 7→ v]
def
= n

b[x 7→ v]
def
= b

l[x 7→ v]
def
= l

x[x 7→ v]
def
= v

y[x 7→ v]
def
= y if x 6= y

(q〈e1, e2〉)[x 7→ v]
def
= q〈e1[x 7→ v], e2[x 7→ v]〉

(qλx : τ.e)[x 7→ v]
def
= qλx : τ.e

(qλy : τ.e)[x 7→ v]
def
= qλx : τ.e[x 7→ v] if x 6= y

(e1 e2)[x 7→ v]
def
= (e1[x 7→ v] e2[x 7→ v])

(letx = e1in e2)[x 7→ v]
def
= letx = e1[x 7→ v]in e2

(let y = e1in e2)[x 7→ v]
def
= let y = e1[x 7→ v]in e2[x 7→ v] if x 6= y

(split e1as y, z in e2)[x 7→ v]
def
= split e1[x 7→ v]as y, z in e2 if x = y ∨ x = z

(split e1as y, z in e2)[x 7→ v]
def
= split e1[x 7→ v]as y, z in e2[x 7→ v] otherwise

(ite e e1 e2)[x 7→ v]
def
= ite e[x 7→ v] e1[x 7→ v] e2[x 7→ v]

(alloc e)[x 7→ v]
def
= alloc e[x 7→ v]

(gaf e)[x 7→ v]
def
= gaf e[x 7→ v]

Figure 3: The substitution function, defined recursively over the expression.

4

(σ, e)→ (σ′, e′)

(σ,E)→E (σ′, [e′])
E-Ctx

(σ, (q λ x:τ. e) v)→ (σ, e[x 7→ v])
E-App

(σ, let x = v in e)→ (σ, e[x 7→ v])
E-Let

(σ, split 〈v1, v2〉 as x, y in e)→ (σ, e[x 7→ v1, y 7→ v2])
E-Split

` fresh

(σ,alloc v)→ (σ[` 7→ v], `)
E-Alloc

v = σ(`) σ = σ′ ⊕ (` 7→ v)

(σ,gaf `)→ (σ′, v)
E-GetAndFree

(σ, ite true e1 e2)→ (σ, e1)
E-IfTrue

(σ, ite false e1 e2)→ (σ, e2)
E-IfFalse

` fresh
(σ, lin 〈v1, v2〉)→ (σ[`→ non 〈v1, v2〉], `)

E-AllocPair

` fresh
(σ, linλx : τ.e)→ (σ[`→ nonλx : τ.e], `)

E-AllocFun

σ = σ′ ⊕ (` : non 〈v1, v2〉)
(σ, split `asx, y in e)→ (σ′, e[x 7→ v1][y 7→ v2])

E-SplitLin

σ = σ′ ⊕ (` : nonλx : τ.e)

(σ, ` v)→ (σ′, e[x 7→ v])
E-AppLin

Figure 4: The operational semantics.

5

Γ1,Γ2 = λx.

{
Γ1(x) x ∈ Γ1

Γ2(x) x ∈ Γ2

We define p, q for store typings Σ the same way as well. Notice that p, q over
typing contexts (and store typings) forms a commutative monoid so we have the
exchange structural rule automatically under this definition and we will avoid
injecting it into our typing rules for our algorithmic type system.

We denote disjointness of maps Γ1 and Γ2 with

Γ1 ⊥ Γ2
def
= dom(Γ1) ∩ dom(Γ2) = ∅.

We define the context difference operator ÷ inductively–as defined in [1]2:

Γ÷ · = Γ

Γ1 ÷ Γ2 = Γ3 x : lin p /∈ Γ3

Γ1 ÷ Γ2, x : lin p = Γ3

Γ1 ÷ Γ2, x : non p = Γ3

Γ1 ÷ Γ2 = Γ3, x : non p

This operator is undefined if both arguments contain the same linear binding
(e.g. x : linbool ÷ x : linbool). We will exploit this fact to enforce proper
use of linear variables and scoping when type checking λ and let expressions.

We also define the following operator p−̂q to allow weakening of nonlinear
bindings. It removes x from the context if and only if x maps to a linear type.
Here, Γ \ (x : τ) subtracts the binding on the right-hand-side from Γ.

Γ −̂ x =

{
Γ \ (x : lin p) Γ(x) = lin p
Γ otherwise

When using linear values hence converting them to non-linear values that
can be duplicated, we need to be careful to prevent duplicating values containing
references (e.g. pairs with linear values inside). We define the unary relation
lin-free over types as below to give that guarantee:

lin-freenonbool lin-freenonnum lin-freenon τ1 −∗ τ2
lin-free τ1 lin-free τ2

lin-freenon τ1 ∗ τ2

We define Σ ` σ informally as, “σ is well-formed under store typing Σ.”,
i.e. for each location l in Σ, the value σ(l) is well-typed and has the type Σ(l).

2Our definition is slightly simpler because our definition of p, q gives us exchange so we
don’t need to bake it into this definition

6

Γ; Σ ` e : τ ‖ Γ′

Γ(x) = τ

Γ; Σ ` x : τ ‖ (Γ −̂ x)
T-Var

Γ; Σ ` q b : q bool ‖ Γ
T-Bool

Γ; Σ ` q n : q num ‖ Γ
T-Num

Σ(`) = non τ

Γ; Σ ` q ` : lin τ ‖ Γ
T-Loc

Γ; Σ ` e : non p ‖ Γ′

Γ; Σ ` alloc e : lin p ‖ Γ′ T-Alloc

Γ; Σ ` e : lin p ‖ Γ′ lin-freenon τ

Γ; Σ ` gaf e : non p ‖ Γ′ T-GetAndFree

Γ1; Σ1 ` e1 : τ1 ‖ Γ2 Γ2; Σ2 ` e2 : τ2 ‖ Γ3 q(τ1) q(τ2)

Γ1; (Σ1,Σ2) ` q 〈e1, e2〉 : q (τ1 ∗ τ2) ‖ Γ3
T-Pair

Γ1; Σ1 ` e1 : q (τ1 ∗ τ2) ‖ Γ2 Γ2, x:τ1, y:τ2; Σ2 ` e2 : τ ‖ Γ3

Γ1; (Σ1,Σ2) ` split e1 asx, y in e2 : τ ‖ Γ3 ÷ (x:τ1, y:τ2)
T-Split

Γ1; Σ1 ` e : non bool ‖ Γ2 Γ2; Σ2 ` e1 : τ ‖ Γ3 Γ2; Σ2 ` e2 : τ ‖ Γ3

Γ1; (Σ1,Σ2) ` ite e e1 e2 : τ ‖ Γ3
T-If

τ2 = non τ ⇒ Γ2 = Γ3 ÷ (x:τ1) Γ1; Σ1 ` e1 : τ1 ‖ Γ2 Γ2, x:τ1; Σ2 ` e2 : τ2 ‖ Γ3

Γ1; (Σ1,Σ2) ` let x = e1 in e2 : τ2 ‖ Γ3 ÷ (x:τ1)
T-Let

q = non⇒ Γ1 = Γ2 ÷ (x:τ1) Γ1, x:τ1; Σ1 ` e : τ2 ‖ Γ2

Γ1; Σ1 ` q λ x:τ. e : q τ1 −∗ τ2 ‖ Γ2 ÷ (x:τ1)
T-Abs

Γ1; Σ1 ` e1 : q τ1 −∗ τ2 ‖ Γ2 Γ2; Σ2 ` e2 : τ1 ‖ Γ3

Γ1; (Σ1,Σ2) ` e1 e2 : τ2 ‖ Γ3
T-App

Figure 5: Type-checking rules with store-typing context.

Formally,

· ` · st1
·; Σ ` v : non p ‖ · Σ ` σ lin-freenon p

`:lin p,Σ ` `:v, σ st2

·; Σ ` linλx : τ1.e : lin τ1 −∗ τ2 ‖ · Σ ` σ
`:lin τ1 −∗ τ2,Σ ` (` : nonλx : τ1.e), σ

st3

·; Σ ` lin 〈v1, v2〉 : lin τ1 ∗ τ2 ‖ · Σ ` σ
`:lin τ1 ∗ τ2,Σ ` (` : non 〈v1, v2〉), σ

st4

7

Here, we define store typing carefully for reference-free types (using lin-free
as a side condition) and linear pairs & functions. This definition will ensure that
gaf preserves types properly. For the values of types not free-able by gaf (hence
must be destroyed by split or function application), we inspect the value in the
store to construct an almost-value expression (using linear constructors) to check
the types. We need this unusual deconstruction & construction mechanism
because we do not allow linear pairs or functions to be values so that the only
linearly-typed values are locations which will point to the store.

We define our type system in Figure 5. Notice that the type system is
nondeterministic for non-empty store typings but we put the restriction that the
initial (user) programs are location-free so the type system becomes algorithmic
because there is only one way to split the empty store typing.

5 Proof of Soundness

Theorem 1 (Progress). If ·; Σ ` e : τ ‖ ·, then either e is a value or for any σ
such that Σ ` σ then (σ, e)→ (σ′, e′).

Proof. The proof follows by structural induction on derivations of terms of e.
We consider all possible cases as follows:

Case 1 : e ∈ Value

A value does not take a step so this case vacuously holds.

Case 2 : e = x, where x ∈ Variable

The only rule to type check e is T-Var but it does not apply under empty
typing context so this case also vacuously holds.

Case 3 : e = (e1 e2)

By the induction hypothesis, e1 is either a value or takes a step. Similarly
for e2. If e1 or e2 are not values, then by rule E-Ctx they take a step. If
e1 and e2 are values, then, since e is well-typed, by T-App e1 is a value of
function type q τ1 −∗ τ2 and e2 is of type τ1. There are two possibilities:

(a) q = non . Thus, e1 = nonλx:τ. e3 and e2 = v, where v ∈ Value.
Then, by E-App (σ, e) takes a step.

(b) q = lin . Then, e1 = ` is a location and it is well-typed through
T-Loc so Σ(`) = lin τ1 −∗ τ2. Also Σ ` σ so σ(`) = nonλx:τ.e3
by the store typing judgments. Then, (σ, e) can take a step through
E-AppLin.

Case 4 : e = let x = e1 in e2

By the induction hypothesis, either e1 is a value or (σ, e1) → (σ′, e′1) by
E-Ctx. If e1 is a value, then, by E-Let, (σ, e)→ (σ, e2[x 7→ e1]).

8

Case 5 : e = split e1 as x, y in e2

By the induction hypothesis, either e1 is a value or takes a step. If e1 is
not a value, then, by E-Ctx, it takes a step. If e1 is a value, then, since e
is well-typed, e1 must be of a pair type q τ1∗τ2. There are two possibilities
for q (similar to Case Case 3 : above):

(a) q = non . Hence, e can be well-typed only through T-Pair. Thus,
e = non 〈v1, v2〉. Then, by E-Split, (σ, e) takes a step.

(b) q = lin . Then, e1 = ` is a location and it is well-typed through
T-Loc so Σ(`) = lin τ1 ∗ τ2. Also Σ ` σ so σ(`) = non 〈v1, v2〉 .e3
by the store typing judgments. Then, (σ, e) can take a step through
E-SplitLin.

Case 6 : e = alloc e1

By the induction hypothesis, either e1 is a value or takes a step. If e1 is
not a value, then, by E-Ctx, e1 takes a step. Otherwise, if e1 is a value,
then, since e is well-typed, e1 must be of some type non τ . Then, by
E-Alloc, (σ,alloc e1)→ (σ[` 7→ e1], `) for some fresh location `.

Case 7 : e = gaf e1

By the induction hypothesis, either e1 is a value or takes a step. If e1 is
not a value, then, by E-Ctx, e1 takes a step. Otherwise, if e1 is a value,
then, since e is well-typed, e1 must be of some type lin τ . Furthermore,
since a location is the only kind of value that can be linearly typed (by
T-Loc), then e1 must be a location. Then, we can use E-GetAndFree
to show that (σ, e) takes a step.

Case 8 : e = ite e1 e2 e3

By the induction hypothesis, either e1 is a value or takes a step. If e1 is
not a value, then, by E-Ctx, e1 takes a step. Otherwise, if e1 is a value,
then, since e is well-typed, e1 must be of type non bool. Thus, e1 has
value either true or false. If true, then, by E-IfTrue, (σ, e) takes a
step. Otherwise, if false, then, by E-IfFalse, (σ, e) takes a step.

Case 9 : e = lin 〈e1, e2〉
By the induction hypothesis, e1 is either a value or takes a step. Similarly
for e2. If e1 or e2 are not values, than by rule E-Ctx they take a step.

If e1 and e2 are values, then, since e is well-typed, by T-Pair, e1 is
type τ1 and e2 is of type τ2, both lin (τ1) and lin (τ2) hold. Then, by
E-AllocPair (σ, e) takes a step.

Case 10 : e = linλx:τ. e1

Here, rule E-AllocFun can be applied directly so that (σ, e) takes a step.

This shows that progress can be made for all possible derivations of e, and
thus, proves progress overall.

9

Lemma 2 (Substitution). If Γ, x : τ ; Σ1 ` e : τ ′ ‖ Γ′, and ·; Σ2 ` v : τ ‖ · then
Γ; (Σ1,Σ2) ` e[x 7→ v] : τ ′ ‖ (Γ′ ÷ x).

Proof. by structural induction on e, following the definition of the substitution
function. Most of the cases that involve multiple substitution hinge on an
argument on x occurs only once or v is lin-free. The argument is fleshed out in
Case 3. The cases after 3 refer to that argument.

Case 1 : e = n or e = b or e = l or e = y for some y 6= x. Then e[x 7→ v] = e and
the result holds.

Case 2 : e = x. Then τ = τ ′, e[x 7→ v] = e and Σ1 = ·. We already have
·; Σ2 ` v : τ ‖ · so Γ; (Σ1,Σ2) ` v : τ ′ ‖ Γ. Also, e is well-typed only
through T-Var rule so Γ′ = (Γ, x : τ) −̂ x thus Γ = Γ′ ÷ x hence we are
done.

Case 3 : e = q 〈e1, e2〉. By T-Pair, we obtain the following judgments:

Γ, x:τ ; Σ′
1 ` e1 : τ1 ‖ Γ1

Γ1; Σ′
2 ` e2 : τ2 ‖ Γ′

where Σ′
1,Σ

′
2 = Σ1. Now, we need to case split on τ . There are 2 cases, for

each case we will define Σ3 and Σ4 such that Σ3 = ·∨Σ4 = ·; Σ3,Σ4 = Σ2;
and the applications of the induction hypothesis below work out:

(a) τ is nonlinear. Then, v is a nonlinear value and v is typed under the
empty store typing (it cannot contain locations inside, as enforced
by T-Abs and T-Pair rules). So, Σ3 = · and Σ4 = Σ2 work.

(b) τ is linear. Then, the only way x is used (i.e. free) in e is either only
in e1 or e2 or none of them: Suppose x is free in e1, then it needs
to be typed with T-Var somewhere in the proof tree so x cannot
appear in the output context of e1, which is the input context of e2
so if it is free in e1 it cannot be free in e2 as well. By looking at the
proof tree of well-typedness of e, we can choose:

i. If x is free in e1: let Σ3 = Σ2, Σ4 = ·.
ii. Otherwise, let Σ3 = ·, Σ4 = Σ2. The same assignment will

handle when x is not free in e as well.

From this, and the assumption that ·; Σ2 ` v : τ ‖ ·, it follows from the
induction hypothesis that,

Γ; (Σ′
1,Σ3) ` e1[x 7→ v] : τ1 ‖ Γ1

Γ1; (Σ′
2,Σ4) ` e2[x 7→ v] : τ2 ‖ Γ′ ÷ x.

Again, we apply the T-Pair rule to obtain,

Γ; (Σ1,Σ2) ` (q 〈e1, e2〉)[x 7→ v] : q (τ1 ∗ τ2) ‖ Γ′ ÷ x,

which is what we want to show.

10

Case 4 : e = q λx : τ.e2. If x = y, then the desired result Γ; (Σ1,Σ2) ` e[x 7→ v] :
τ ′ ‖ (Γ ÷ x) is immediate because e[x 7→ v] = e. Because no substitution
occurs and x is not free in e, the type of e does not change.

Case 5 : e = q λy : τ.e2 where y 6= x. Since y 6= x. e[x 7→ v] = (q λy : τ1.e2[x 7→ v].
We need to show that e2[x 7→ v] is well-typed. By typing rule T-Abs,

Γ1, x:τ1, y:τ2; Σ1 ` e2 : τ2 ‖ Γ′
1, (1)

where Σ′
1,Σ

′
2 = Σ1. So, (q λx : τ.e2) is of type q (τ1 −∗ τ2) = τ ′). By (1)

and y:τ1; Σ2 ` v : τ ‖ y:τ1, it follows from the induction hypothesis that

Γ1, y:τ1; (Σ1,Σ2) ` e2[x 7→ v] : τ2 ‖ Γ′
1 ÷ x.

Therefore, by T-Abs,

Γ; (Σ1,Σ2) ` (q λx : τ.e2[x 7→ v]) : q(τ1 −∗ τ2) ‖ Γ′ ÷ x,

which is what we want to show.

Case 6 : e = (e1 e2). By T-App, we obtain:

Γ, x:τ ; Σ′
1 ` e1 : q τ1 −∗ τ2 ‖ Γ1

Γ1; Σ′
2 ` e2 : τ1 ‖ Γ′.

where Σ1 = Σ′
1,Σ

′
2. By a similar argument as the pair case (Case 3 :),

we can find Σ3 and Σ4 such that Σ3 = · ∨ Σ4 = ·; Σ3,Σ4 = Σ2; and
the applications of the induction hypothesis below work out. From this,
and the assumption that ·; Σ2 ` v : τ ‖ ·, it follows from the induction
hypothesis that,

Γ; (Σ′
1,Σ3) ` e1[x 7→ v] : q τ1 −∗ τ2 ‖ Γ1

Γ1; (Σ′
2,Σ4) ` e2[x 7→ v] : τ1 ‖ Γ′ ÷ x.

Again, we apply the T-App rule to obtain,

Γ; (Σ1,Σ2) ` (e1 e2)[x 7→ v] : τ2 ‖ Γ′ ÷ x,

which is what we want to show.

Case 7 : e = letx = e1 in e2. Then, e[x 7→ v] = letx = e1[x 7→ v] in e2. By
induction hypothesis, Γ2; (Σ′

1,Σ2) ` e2[x 7→ v] : τ ′ ‖ (Γ3 ÷ x) (where Γ2

and Γ3 come from well-typedness of e and T-Let rule, and Σ′
1,Σ

′
2 = Σ1

such that Σ′
1 is the part that is used for proving well-typedness of e1 in

the proof of well-typedness of e) so, by applying T-Let rule to letx =
e1[x 7→ v] in e2, we get Γ; (Σ1,Σ2) ` e : τ ′ ‖ (Γ÷ x) and we are done.

11

Case 8 : e = let y = e1 in e2 where y 6= x. Assuming our term is well-typed, we
employ inversion to determine how it could have become well-typed. To
this end, we employ the T-Let rule to see that

· · · Γ, x : τ ; Σ1 ` e1 : τ1 ‖ Γ2 Γ2, y:τ1; Σ2 ` e2 : τ ′ ‖ Γ3

Γ, x : τ ; (Σ1,Σ2) ` let y = e1 in e2 : τ ′ ‖ Γ3 ÷ (y:τ1)
T-Let

where Γ3 ÷ (y:τ1) = Γ′ and Σ1 = Σ′
1,Σ

′
2. By a similar argument as the

pair case (Case 3 :), we can find Σ3 and Σ4 such that Σ3 = · ∨ Σ4 = ·;
Σ3,Σ4 = Σ2; and the applications of the induction hypothesis below work
out. From this, and the assumption that ·; Σ2 ` v : τ ‖ ·, it follows from
the induction hypothesis that,

Γ; Σ1 ` e1[x 7→ v] : τ1 ‖ Γ2 ÷ x
Γ2 ÷ x, y:τ1; Σ2 ` e2[x 7→ v] : τ ′ ‖ Γ3 ÷ x

We can now apply T-Let to obtain Γ; Σ0,Σ2 ` e[x 7→ v] : τ ′ ‖ Γ3÷ x÷ y.
Note that Γ3 ÷ x÷ y = Γ3 ÷ y ÷ x = Γ′ ÷ x and we are done.

Case 9 : e = split e1 as y, z in e2 where x = y ∨ x = z. The split rule works
essentially in the same manner as a let construct in that it binds variables
in the first argument to terms in the second argument. If the value to be
substituted names the same value that either z or y appearing in e2 do
then we do not propagate the substitution into the body of e2. However,
we may still propagate the substitution into e1. To do this, we employ the
T-Split rule to obtain:

Γ, x:τ ; Σ′
1 ` e1 : q (τ1 ∗ τ2) ‖ Γ′

1

Where Σ1 = Σ′
1,Σ

′
2 and Σ′

1 is the part of Σ1 used for proving well-
typedness of e1 in the proof of well-typedness of e. Then, by induction
hypothesis, we have

Γ, x:τ ; Σ′
1,Σ2 ` e1[x 7→ v] : q (τ1 ∗ τ2) ‖ Γ′

1

We can apply T-Split again to show that e[x 7→ v] = split e1[x 7→
v]as y, z in e2 is well-typed under Σ1,Σ2 = Σ′

1,Σ
′
2,Σ2:

Γ; Σ′
1,Σ2 ` e1[x 7→ v] : q (τ1 ∗ τ2) ‖ Γ2 Γ2, y:τ1, z:τ2; Σ′

2 ` e2 : τ ‖ Γ′ ÷ x
Γ; (Σ′

1,Σ
′
2,Σ2) ` split e1 as y, z in e2 : τ ‖ Γ′ ÷ x T-Split

Case 10 : e = split e1 as y, z in e2 where x 6= y ∧ x 6= z. The proof of this case
is similar to Case 7–the second let case. First, note that e[x 7→ v] =
split e1[x 7→ v]as y, z in e2[x 7→ v]. Then, we start with well-typedness of
e to obtain a way to split the store typing:

Γ, x : τ ; Σ′
1 ` e1 : q (τ1 ∗ τ2) ‖ Γ2 Γ2, x:τ1, y:τ2; Σ′

2 ` e2 : τ ‖ Γ′

Γ, x : τ ; (Σ′
1,Σ

′
2) ` split e1 asx, y in e2 : τ ‖ Γ3 ÷ (x:τ1, y:τ2)

T-Split

12

where Σ1 = Σ′
1,Σ

′
2. By a similar argument as the pair case (Case 3 :),

we can find Σ3 and Σ4 such that Σ3 = · ∨ Σ4 = ·; Σ3,Σ4 = Σ2; and
the applications of the induction hypothesis below work out. From this,
and the assumption that ·; Σ2 ` v : τ ‖ ·, it follows from the induction
hypothesis that,

Γ; Σ′
1,Σ4 ` e1[x 7→ v] : τ ′ ‖ Γ′

2

Γ′
2; Σ′

2,Σ4 ` e2[x 7→ v] : τ ′ ‖ Γ′ ÷ x

Then, we can apply T-Split to obtain the judgment Γ; Σ′
1,Σ

′
2,Σ2 ` e[x 7→

v] : τ ′ ‖ Γ′ ÷ x.

Case 11 : e = ite e e1 e2. e is well-typed so we know

Γ1; Σ′
1 ` e : non bool ‖ Γ2 Γ2; Σ′

2 ` e1 : τ ‖ Γ3 Γ2; Σ′
2 ` e2 : τ ‖ Γ′

Γ1; (Σ′
1,Σ

′
2) ` ite e e1 e2 : τ ‖ Γ′ T-If

where Σ1 = Σ′
1,Σ

′
2. By a similar argument as the pair case (Case 3 :),

we can find Σ3 and Σ4 such that Σ3 = · ∨ Σ4 = ·; Σ3,Σ4 = Σ2; and
the applications of the induction hypothesis below work out. From this,
and the assumption that ·; Σ2 ` v : τ ‖ ·, it follows from the induction
hypothesis that,

Γ; Σ′
1,Σ3 ` e[x 7→ v] : non bool ‖ Γ2

Γ2; Σ′
2,Σ4 ` e1[x 7→ v] : τ ′ ‖ Γ′ ÷ x

Γ2; Σ′
2,Σ4 ` e2[x 7→ v] : τ ′ ‖ Γ′ ÷ x

Note that e[x 7→ v] = ite e[x 7→ v] e1[x 7→ v] e2[x 7→ v]. Then, by apply-
ing T-If rule, we obtain Γ; Σ1,Σ2 ` ite e[x 7→ v] e1[x 7→ v] e2[x 7→ v] :
τ ′ ‖ Γ′ ÷ x, and we are done.

Case 12 : e = alloc e1. e[x 7→ v] = alloc e1[x 7→ v]. By induction hypothesis, we get
Γ; (Σ1,Σ2) ` e1[x 7→ v] : non p ‖ (Γ ÷ x) where τ ′ = lin p. By T-Alloc
we get Γ; (Σ1,Σ2) ` alloc e1[x 7→ v] : lin p ‖ (Γ÷ x) and we are done.

Case 13 : e = gaf e1. e[x 7→ v] = gaf e1[x 7→ v]. By induction hypothesis, we
get Γ; (Σ1,Σ2) ` e1[x 7→ v] : lin p ‖ (Γ ÷ x) where τ ′ = non p. By T-
GetAndFree we get Γ; (Σ1,Σ2) ` gaf e1[x 7→ v] : non p ‖ (Γ ÷ x) and
we are done.

Although the typing contexts and the store typings seem disparate, our
substitution lemma shows that there is a cromulent relation between the two
formed by substituting variables with values potentially referencing the store.

Lemma 3 (Contexts don’t introduce variables). If x is not free in E[e] then it
is not free in e.

13

Proof. By induction on E. None of the cases for evaluation contexts introduce
variables that can be used in the holes.

We use the lemma below implicitly to split stores along with splitting store
typings.

Lemma 4. If Σ1,Σ2 ` σ then ∃σ1, σ2 such that σ1 ⊥ σ2 and Σi ` σi for
i ∈ { 1, 2 }.

Proof. The proof is rather uninteresting and by induction on Σ1.

• Σ1 = ·. Then, σ1 = [], σ2 = σ, Σ2 = Σ satisfy the conditions.

• Σ1 = ` : τ,Σ′
1. Then, by IH, there is a σ′

1 such that Σ′
1,Σ2 ` σ′

1 ⊕ σ2,
σ1 ⊕ σ2 = σ′, and σ = [` 7→ v] ⊕ σ′. Then, using the definition of Σ ` σ
and associativity of ⊕:

Σ′
1,Σ2 ` σ′

1 ⊕ σ2 σ = [` 7→ v]⊕ σ′
1 ⊕ σ2

Σ1,Σ2 ` σ1 ⊕ σ2

We will prove a weak version of preservation theorem for evaluation contexts
and expressions with no free variables.

Lemma 5 (Preservation for evaluation contexts). If Σ ` σ, and ·; Σ ` E[e1] :
τ ‖ · then ∃σ1, σ′

1, σ2,Σ1,Σ
′
1,Σ2. ∀σ′

1.Σ
′
1 ` σ′

1 ∧ Σ′
1 ⊥ Σ2 such that

Σ = Σ1,Σ2 (2)

Σ1 ` σ1 (3)

Σ2 ` σ2 (4)

·; Σ1 ` e1 : τ1 ‖ · (5)

·; (Σ′
1,Σ2) ` E[e′] : τ ‖ · (6)

hold for any given well-typed expression e′ such that ·; Σ′
1 ` e′ : τ1 ‖ ·.

In prose, if we can split a top-level expression into an evaluation context and
an inner expression, then we can also split the resources needed to type check
the expression so that the resources needed (the store typing) for the evaluation
context and the resources needed for the inner expression are disjoint.

Proof. By structural induction on E.
All the cases below use the induction hypothesis to get store typings handling

the inner context E1 (E1 arises from scrunitizing E for structural induction),
then use associativity of p, q to shuffle things around to obtain Σ2 that satisfies
the conditions for E. The cases are pretty similar but we produce all of them
for completion nevertheless.

14

Case 1 : E = []. This case trivially holds where Σ′
1 = Σ1. We will look at the

proof tree of ·; Σ ` E[e1] for the rest of the cases to obtain Σ1,Σ
′
1,Σ2 that

satisfy the conditions. The uses of ih in the proof trees below indicate use
of the induction hypothesis.

Case 2 : E = E1e.

·; Σa ` E1[e1] : q τ1 −∗ τ2 ‖ · ·; Σb ` e : τ1 ‖ ·
·; Σa,Σb ` E1[e1] e : τ2 ‖ ·

T-App

So,

·; Σ′
a ` E1[e′] : q τ1 −∗ τ2 ‖ ·

ih
·; Σb ` e : τ1 ‖ ·

·; Σ′
a,Σb ` E1[e′] e : τ2 ‖ ·

T-App

Then, by IH3, there is a Σ′ such that Σ′
a = Σ′

1,Σ
′ and Σa = Σ1,Σ

′.
Choosing Σ2 = Σb,Σ

′ satisfies the conditions in our theorem statement
by associativity of p, q.

Case 3 : E = vE1. The proof for this case is similar to the case above. We apply IH
to E1[e1] and E1[e′] then use associativity of p, q just like the case above.

Case 4 : E = q 〈E1, e2〉. The proof of this case and the other pair case is similar to
the application case above.

·; Σa ` E1[e1] : τ1 ‖ · ·; Σb ` e2 : τ2 ‖ · q(τ1) q(τ2)

·; (Σa,Σb) ` q 〈E1[e1], e2〉 : q(τ1 ∗ τ2) ‖ · T-Pair

So, using IH on E1, we get:

·; Σ′
a ` E1[e′] : τ1 ‖ ·

ih
·; Σb ` e2 : τ2 ‖ · q(τ1) q(τ2)

·; (Σ′
a,Σb) ` q 〈E1[e′], e2〉 : q(τ1 ∗ τ2) ‖ · T-Pair

Then, by IH, there is a Σ′ such that Σ′
a = Σ′

1,Σ
′ and Σa = Σ1,Σ

′.
Choosing Σ2 = Σb,Σ

′ satisfies our theorem statement.

Case 5 : E = q 〈v,E1〉. The proof for this case is similar to the one above. We
apply IH to the second part of the pair then use associativity of p, q to
build Σ′

1 and Σ2.

3induction hypothesis

15

Case 6 : E = letx = E1 in e. We have

·; Σa ` E1[e1] : τ1 ‖ · ·, x:τ1; Σb ` e2 : τ2 ‖ ·
·; (Σa,Σb) ` let x = E1[e1] in e2 : τ2 ‖ · ÷(x:τ1)

T-Let

So, by applying IH on E1, we get

·; Σa ` E1[e′] : τ1 ‖ ·
ih
·, x:τ1; Σb ` e2 : τ2 ‖ ·

·; (Σa,Σb) ` let x = E1[e′] in e2 : τ2 ‖ · ÷(x:τ1)
T-Let

where there is a Σ′ (obtained by IH) satisfying Σa = Σ1,Σ
′, and Σ′

a =
Σ′

1,Σ
′. Then, setting Σ2 = Σb,Σ

′ satisfies the conditions in our theorem
statement.

Case 7 : E = splitE1 asx, y in e2. By well-typedness of E[e1], we have

·; Σa ` E1[e1] : q (τ1 ∗ τ2) ‖ · x:τ1, y:τ2; Σb ` e2 : τ ‖ Γ3

·; (Σa,Σb) ` splitE1[e1]asx, y in e2 : τ ‖ Γ3 ÷ (x:τ1, y:τ2)
T-Split

Where Γ3 ÷ (x : τ1, y : τ2) = · because E[e1] is well-typed with output
context ·. By applying IH on E1, we get:

·; Σ′
a ` E1[e′] : q (τ1 ∗ τ2) ‖ ·

ih
x:τ1, y:τ2; Σb ` e2 : τ ‖ Γ3

·; (Σ′
a,Σb) ` splitE1[e′]asx, y in e2 : τ ‖ Γ3 ÷ (x:τ1, y:τ2)

T-Split

where there is a Σ′ (obtained by IH) satisfying Σa = Σ1,Σ
′, and Σ′

a =
Σ′

1,Σ
′. Then, setting Σ2 = Σb,Σ

′ satisfies the conditions in our theorem
statement.

Case 8 : E = iteE1 e2 e3. We have

·; Σa ` E1[e1] : nonbool ‖ · ·; Σb ` e2 : τ ‖ · ·; Σb ` e3 : τ ‖ ·
·; (Σa,Σb) ` iteE[e1] e2 e3 : τ ‖ · T-If

So, by applying IH on E1, we get:

·; Σ′
a ` E1[e′] : nonbool ‖ ·

ih
·; Σb ` e2 : τ ‖ · ·; Σb ` e3 : τ ‖ ·

·; (Σ′
a,Σb) ` iteE[e′] e2 e3 : τ ‖ · T-If

where there is a Σ′ (obtained by IH) satisfying Σa = Σ1,Σ
′, and Σ′

a =
Σ′

1,Σ
′. Then, setting Σ2 = Σb,Σ

′ satisfies the conditions in our theorem
statement.

Case 9 : E = allocE1. By well-typedness of E[e1] we have:

Γ; Σ ` E1[e1] : non p ‖ Γ′

Γ; Σ ` allocE1[e1] : lin p ‖ Γ′ T-Alloc

16

By applying IH on E1, we get:

Γ; Σ ` E1[e1] : non p ‖ Γ′ ih

Γ; Σ ` allocE1[e1] : lin p ‖ Γ′ T-Alloc

where there is a Σ2 (obtained by IH) satisfying Σ = Σ1,Σ2 and other con-
ditions stated in our theorem. This Σ2 works directly because alloc itself
does not need additional store typing in our type system.

Case 10 : E = gaf E1. By well-typedness of E[e1] we have:

Γ; Σ ` E1[e1] : lin p ‖ Γ′

Γ; Σ ` gaf E1[e1] : non p ‖ Γ′ T-GetAndFree

By applying IH on E1, we get:

Γ; Σ ` E1[e1] : lin p ‖ Γ′ ih

Γ; Σ ` gaf E1[e1] : non p ‖ Γ′ T-GetAndFree

where there is a Σ2 (obtained by IH) satisfying Σ = Σ1,Σ2 and other
conditions stated in our theorem. This Σ2 works directly because gaf itself
does not need additional store typing in our type system.

Lemma 6 (Frame rule). If (σ1, e) → (σ′
1, e

′) and σ2 ⊥ σ1 ∧ σ2 ⊥ σ′
1 then

(σ1 ⊕ σ2, e)→ (σ′
1 ⊕ σ2, e′).

Proof. By structural induction on e, following the evaluation rules.

Case 1 : e = v, a value does not take a step so this case vacuously holds.

Case 2 : e = x, variables do not take a step so this case vacuously holds.

Case 3 : e = E[e1], the only rule that applies is E-Ctx. So, (σ1, e1)→ (σ′
1, e

′
1). By

induction hypothesis, (σ1 ⊕ σ2, e1) → (σ′
1 ⊕ σ2, e′1). By applying E-Ctx,

(σ1 ⊕ σ2, E[e1])→ (σ′
1 ⊕ σ2, E[e′1]).

Case 4 : e = v1v2, by the argument from theorem 1 for the application case, v1 =
qλx : τ.e2 is a lambda abstraction (if q = non) or a location (if q = lin).

In the first case, the only way for e to take a step is through E-App rule.
Note that the store is not used for this rule, so if (σ1, e) → (σ1, e

′) then
(σ1 ⊕ σ2, e)→ (σ1 ⊕ σ2, e′).
In the q = lin case, the only way for e to take a step is through E-AppLin
rule. So, (σ1, `v2)→ (σ′

1, e1[v2 7→ x]) where σ1 = σ′
1 ⊕ (` : nonλx : τ.e1).

Note that σ1 ⊕ σ2 = (σ′
1 ⊕ σ2) ⊕ (` : nonλx : τ.e1) by associativity

and commutativity of ⊕. So, E-AppLin rule also applies under σ1 ⊕ σ2:
(σ1 ⊕ σ2, e)→ (σ′

1 ⊕ σ2, e1[v2 7→ x]).

17

Case 5 : e = (letx = v in e2), the proof for this case is similar to the case above.
The only way e can take a step is via E-Let rule, which does not use the
store. So, if (σ1, e)→ (σ1, e

′) then (σ1 ⊕ σ2, e)→ (σ1 ⊕ σ2, e′).

Case 6 : e = ite v e1 e2, the reasoning for this case is similar to the let case above.
The only way e can take a step is via E-IfTrue and E-IfFalse rules.
Neither of these rules uses the store and they both leave the store intact
so if (σ1, e)→ (σ1, e

′) then (σ1 ⊕ σ2, e)→ (σ1 ⊕ σ2, e′).

Case 7 : e = split non 〈v1, v2〉 asx, y in e2. The only way e can take a step is
through E-Split rule. This rule also does not use or alter the store so if
(σ1, e)→ (σ1, e

′) then (σ1 ⊕ σ2, e)→ (σ1 ⊕ σ2, e′).

Case 8 : e = split `asx, y in e2. The only way e can take a step is through E-
SplitLin rule. So, (σ1, `v2) → (σ′

1, e2[v1 7→ x][v2 7→ y]) where σ1 =
σ′
1 ⊕ (` : non 〈v1, v2〉). Note that σ1 ⊕ σ2 = (σ′

1 ⊕ σ2)⊕ (` : non 〈v1, v2〉)
by associativity and commutativity of ⊕. So, E-SplitLin rule also applies
under σ1 ⊕ σ2: (σ1 ⊕ σ2, e)→ (σ′

1 ⊕ σ2, e2[v1 7→ x][v2 7→ y]).

Case 9 : e = alloc v. The only way e can take a step is via E-Alloc rule. So,
σ′
1 = σ1[` 7→ v] and (σ1 ⊕ σ2,alloc v) → (σ1[` 7→ v] ⊕ σ2, `) also holds

because σ2 ⊥ σ1[` 7→ v] is a premise in our theorem.

Case 10 : e = gaf `. The only way e can take a step is via E-GetAndFree rule.
So, σ1 = σ′

1[` 7→ v] and (σ1 ⊕ σ2,gaf v) → (σ′
1 ⊕ σ2, σ1(`)) also holds

because σ1 ⊥ σ1.

Theorem 7 (Preservation). If

·; Σ ` e : τ ‖ ·
Σ ` σ

(σ, e)→ (σ′, e′)

Then there exists a store typing Σ′ such that Σ′ ` σ and ·; Σ ` e′ : τ ‖ ·.

Proof. The proof follows by structural induction on e, grouped by different cases
e→ e′ applies. We consider all possible cases as follows:

Case 1 : e = v, a value does not take a step so this case vacuously holds.

Case 2 : e = x, the only rule to type check e is T-Var but it does not apply under
empty typing context so this case also vacuously holds.

Case 3 : e = E[e1] for some evaluation context E and expression e1. The only
applicable rule for E[e1] taking a step is by using E-Ctx rule: (σ,E[e1])→
(σ′, E[e′1]).

18

so ∀σ1 such that (σ1, e1) → (σ′
1, e

′
1) the following holds: (σ,E[e1]) →

(σ′
1 ⊕ σ2, E[e′1]) where σ2 denotes the rest of the store (the solution to

σ = σ1 ⊕ σ2) by frame rule and E-Ctx.4

By induction hypothesis, we know that there exists a Σ′
1 such that ·; Σ′

1 `
e′1 : τ1 ‖ · and Σ′

1 ` σ′
1. By lemma 5, we know that

Σ = Σ1,Σ2

Σ1 ⊥ Σ2

·; Σ1 ` e1 : τ1 ‖ ·
·; (Σ2,Σ

′
1) ` E[e′] : τ ‖ ·

Σ1 ` σ1
Σ2 ` σ2

So, ·; (Σ′
1,Σ2) ` E[e′] : τ ‖ · and (Σ′

1,Σ2) ` σ′
1 ⊕ σ2.

Case 4 : e = v1v2. e is well-typed and the only rule that applies is T-App. So, the
type of v1 is q τ1 −∗ τ . By well-typedness of e, we know:

·; Σ1 ` v1 : q τ1 −∗ τ ‖ · ·; Σ2 ` v2 : τ1 ‖ ·
·; Σ1,Σ2 ` v1 v2 : τ ‖ · T-App

There are two possibilities:

(a) If q = non then v1 has to be a function so v1 = qλx : τ1.e1. So,
x : τ1; Σ1 ` e1 : τ ‖ · as demonstrated by the only valid proof tree for
well-typedness of e below:

· = Γ2 ÷ x : τ1 x : τ1; Σ1 ` e1 : τ ‖ x : Γ2

·; Σ1 ` nonλx : τ1.e1 : non τ1 −∗ τ ‖ ·
T-Abs

So, e can take a step only by applying E-App rule: (σ, (qλx : t.e1)v2)→
(σ, e1[x 7→ v2]). So, for this case, σ′ = σ and e′ = e1[x 7→ v2]. Σ1 ` σ′

and by substitution lemma, ·; Σ1 ` e1[x 7→ v] ‖ · so this case holds.

(b) If q = lin then v has to be a location. Let v = `. Either of the
following cases hold where σ = σ′, ` : v and Σ1 = ` : lin τ1 −∗ τ,Σ′

because v is well-typed via T-Loc.

·; Σ ` v : non τ1 −∗ τ ‖ · Σ ` σ lin-freenon τ1 −∗ τ
`:lin τ1 −∗ τ,Σ1 ` `:v, σ

st2

·; Σ′ ` linλx : τ1.e1 : lin τ1 −∗ τ ‖ · Σ′ ` σ′

`:lin τ1 −∗ τ,Σ′
1 ` (` : nonλx : τ1.e1), σ′ st3

4Here, we are focusing on the part of the store needed for e1 so we can use the induction
hypothesis then extend the store.

19

If st2 holds then σ(`) is a lambda abstraction because it is a well-
typed value of type non τ1 −∗ τ . So, in both cases, σ(`) = nonλx :
τ1.e1 and x : τ1; Σ1 ` e1 : τ ‖ Γ3 where Γ3 ÷ x : τ1 = · because the
function in the store is well-typed as enforced by the first premise
of each store typing rule above. So, e can only take a step via E-
AppLin rule: (σ, e) → (σ′, e1[x 7→ v2]). By our store typing rules
above, we know that Σ′

1,Σ2 ` σ′
1, σ2 where Σ′

1, σ′
1 come from the

store typing rules above and σ2 is the part of σ satisfying Σ2 ` σ2.
By substitution lemma, ·; Σ′

1,Σ2 ` e1[x 7→ v2] : τ ‖ · so we are done.

Case 5 : e = (letx = v in e2). The only applicable typing rule is T-Let. So, we
know the following:

non (τ2)⇒ · = Γ3 ÷ (x:τ1)

·; Σ1 ` v : τ1 ‖ Γ2

x:τ1; Σ2 ` e2 : τ2 ‖ Γ3

where Σ = Σ1,Σ2. Also, the only way for e to take a step is via E-
Let rule: (σ, letx = v in e2) → (σ, e2[x 7→ v]). So, we can apply the
substitution lemma to obtain ·; Σ ` e2[x 7→ v] : τ ‖ · and we are done.

Case 6 : e = split non 〈v1, v2〉asx, y in e2. This case is similar to the let case
above. The only applicable typing rule is T-Split so we get

x:τ1, y:τ2; Σ3 ` e2 : τ ‖ Γ′

Γ′ ÷ (x:τ1, y:τ2) = ·

where our store typing is split into three parts5 Σ = Σ2,Σ2,Σ3 such that
·; Σ2 ` v2 : τ2 ‖ · and ·; Σ2 ` v2 : τ2 ‖ · so, we can apply the substitution
lemma to obtain

y:τ2; (Σ1,Σ3) ` e2[x 7→ v1] : τ ‖ Γ′′Γ′ ÷ (y:τ2) = ·

we can apply the substitution lemma again to obtain

·; (Σ1,Σ2,Σ3) ` e2[x 7→ v1][y 7→ v2] : τ ‖ ·

Notice that the only way for e to take a step is via E-Split: (σ, e) →
(σ, e2[x 7→ v1][y 7→ v2]), and we just showed that ·; Σ ` e2[x 7→ v1][y 7→
v2] : τ ‖ · so we are done with this case.

5using the typing rules T-Pair and T-Split in the proof of well-typedness of e

20

Case 7 : e = split `asx, y in e2. Let Σ = Σ1,Σ2 and σ = σ1⊕σ2 satisfying Σi ` σi
for i ∈ { 1, 2 }. We will get Σ1,Σ2 from the well-typing proof of e:

·; Σ1 ` ` : lin (τ1 ∗ τ2) ‖ · ·, x:τ1, y:τ2; Σ2 ` e2 : τ ‖ ·
·; (Σ1,Σ2) ` split `asx, y in e2 : τ ‖ · ÷(x:τ1, y:τ2)

T-Split

Note that Γ3 ÷ (x : τ1, y : τ2) = · because the output context of well-
typedness of e is empty (∗).
Also note that, ` is well-typed under empty context so we know that
Σ1(`) = lin τ1 ∗ τ2 for some τ1, τ2. By Σ1 ` σ1, we know that either of the
following judgments hold:

·; Σ′
1 ` v : non τ1 ∗ τ2 ‖ · Σ′

1 ` σ′
1 lin-freenon τ1 ∗ τ2

`:lin τ1 ∗ τ2,Σ′
1 ` `:v, σ′

1

st2

·; Σ′
1 ` lin 〈v1, v2〉 : lin τ1 ∗ τ2 ‖ · Σ′

1 ` σ′
1

`:lin τ1 ∗ τ2,Σ′
1 ` (` : non 〈v1, v2〉), σ′

1

st4

In the first case (where st2 holds), σ1(`) = v is a value of a nonlinear pair
type so it has to be a pair σ1(`) = v = non 〈v1, v2〉. In both cases, we can
apply only E-SplitLin rule to step e. So, (σ1 ⊕ σ2, e)→ (σ′

1 ⊕ σ2, e[x 7→
v1][y 7→ v2]). By applying the substitution lemma twice and using the
observation (∗) above, we obtain ·; Σ′

1,Σ2 ` e[x 7→ v1][y 7→ v2] : τ ‖ ·.
Also, Σ′

1 ` σ′
1 by the store typing rules above and we have Σ2 ` σ2 so the

store typing Σ′
1,Σ2 also satisfies Σ′

1,Σ2 ` σ1 ⊕ σ2 and we are done.

Case 8 : e = alloc v. e is well-typed and the only typing rule that applies is T-
Alloc so the type of e is lin τ and ·; Σ ` v : non τ ‖ · holds. The only
way e can take a step is via E-Alloc rule so (σ,alloc v)→ (σ[` 7→ v], `).
Note that Σ, ` : non τ ` σ[` 7→ v] hence ·; Σ, ` : non τ ` ` : lin τ ‖ ·.

Case 9 : e = gaf v. e is well-typed and the only typing rule that applies is T-
GetAndFree so the type of e is non p and ·; Σ ` v : lin p ‖ · holds.
Since v is a value that has a linear type, it has to be a location: v = ` for
some ` ∈ dom(σ). The only way e can take a step is via E-GetAndFree
rule: (σ,gaf `) → (σ′, σ(`)) where σ′ is σ without the binding ` 7→ σ(`).
We need to find a Σ′ such that Σ′ ` σ′ and ·; Σ′ ` σ(`) ‖ ·.
Note that Σ ` σ and σ is non-empty. Because stores and store contexts
are unordered, all proofs of Σ ` σ commute (we can re-order the heaps to
change the proof tree). So, the premises of the following judgment hold
and are exactly what we need (where Σ′ is Σ without the binding ` : τ ,
the last premise holds because it is a premise of well-typedness of gaf v):

21

·; Σ ` v : non p ‖ · Σ ` σ lin-freenon p

`:lin p,Σ ` `:v, σ

Case 10 : e = ite v e1 e2. The only way to type check e is via T-If so ·; · ` v :
nonbool ‖ ·. So, we know that

·; Σ ` e1 : τ ‖ ·
·; Σ ` e2 : τ ‖ ·

The only ways e can take a step are via E-IfFalse and E-IfTrue,
depending on v. So the possible next states are (σ, e)− > (σ, e1) or
(σ, e)− > (σ, e2) and we just showed that the type of the expression is
preserved in both cases.

Case 11 : e = linλx : τ1.e1. e is well-typed so ·; Σ ` e : lin τ1 −∗ τ2 ‖ ·. The only
way e can take a step is via E-AllocFun: ((σ, linλx : τ.e) → (σ[` 7→
nonλx : τ.e], `) where ` is a fresh location. Let Σ′ = Σ, ` : lin τ1 −∗ τ2.
Then, the following judgment holds (the premises are the assumptions in
our theorem).

·; Σ ` linλx : τ1.e : lin τ1 −∗ τ2 ‖ · Σ ` σ
`:lin τ1 −∗ τ2,Σ ` (` : nonλx : τ1.e), σ

So, the type of our expression and the store is preserved under the store
typing Σ′ = Σ, ` : lin τ1 −∗ τ2 in this case.

Case 12 : e = lin 〈v1, v2〉. The proof of this case is similar to the case above. e is
well-typed so ·; Σ ` e : lin τ1 ∗ τ2 ‖ ·. The only way e can take a step is
via E-AllocPair: ((σ, lin 〈v1, v2〉)→ (σ[` 7→ non 〈v1, v2〉], `) where ` is
a fresh location. Let Σ′ = Σ, ` : lin τ1 ∗ τ2. Then, the following judgment
holds (the premises are the assumptions in our theorem).

·; Σ ` lin 〈v1, v2〉 : lin τ1 ∗ τ2 ‖ · Σ ` σ
`:lin τ1 ∗ τ2,Σ ` (` : non 〈v1, v2〉), σ

st4

References

[1] D. Aspinall and M. Hofmann. Dependent Types. In Advanced Topics in
Types and Programming Languages. The MIT Press, 12 2004.

22

[2] J. Berdine and P. W. O’Hearn. Strong update, disposal, and encapsulation in
bunched typing. In S. D. Brookes and M. W. Mislove, editors, Proceedings of
the 22nd Annual Conference on Mathematical Foundations of Programming
Semantics, MFPS 2006, Genova, Italy, May 23-27, 2006, volume 158 of
Electronic Notes in Theoretical Computer Science, pages 81–98. Elsevier,
2006.

[3] Q. Cao, S. Cuellar, and A. W. Appel. Bringing order to the separation logic
jungle. In Asian Symposium on Programming Languages and Systems, pages
190–211. Springer, 2017.

[4] P. W. O’Hearn. On bunched typing. J. Funct. Program., 13(4):747–796,
2003.

23

