
Synthesizing Concurrent Code using a Solver-aided DSL

Harlan Kringen and Zachary Sisco

1 Introduction

Systems which require multiple processes and threads
tend rely on a classic suite of synchronization tools,
including locks, mutexes, condition variables, moni-
tors, and semaphores. Synchronization refers to using
these primitives in a way that prevents data races,
race conditions, staleness, and any other problems
that might stem from distinct pieces of code trying
to modify the same region of data in an unstruc-
tured way. Unfortunately, writing synchronization
code is di�cult and error-prone. Programmers have
susbequently researched ways of automatically gen-
erating synchronization code based on a higher-level
understanding of the intended behavior. This �eld
of research is known as program synthesis and often
done through the use of SMT sovlers or other logi-
cal speci�cation tools. In this paper we build a con-
current, imperative programming language to study
program synthesis with the aid of the Rosette pro-
gram synthesis framework (Torlak and Bodik 2014).
We demonstrate how to design and implement such
a language in the Racket programming language and
use the Rosette framework to perform a set of basic
synthesis tasks.

1.1 Motivation

Ferles et al. (2018) explored synthesizing explicit sig-
nal monitors for multithreaded code in Java. Such
monitors use condition variables to update locks to
communicate with other threads working on shared
memory. Using automated program synthesis ensures
that the generated synchronization code is correct
and, ideally, optimized. Based on our experiences
in the CS170 Operating Systems class, which uses
semaphores extensively, we were interested speci�-
cally in synthesizing semaphores for basic concur-

rent code. Given a simple threaded implementa-
tion of a multiple-reader -multiple-writer queue, we
wanted to state a simple, high-level description of the
behavior�e.g., that two writers may not both push
to the queue at the same time, but multiple readers
could pop, and generate code with the correspond-
ing counting semaphores. This requires a speci�ca-
tion language, as well as some type of semantics the
Rosette framework can use to build in semaphores
where it needs.

1.2 Contributions

Our concurrent, imperative programming language is
able to simulate parallel executions of multithreaded
code, as well as give the user a synchronization prim-
itive similar to a mutex to lock code so as not to be
interrupted by other threads. We are able to pass
this to the Rosette library with bits of user code
replaced by Rosette's symbolic values, and can per-
form basic solver-based queries on the code. These
queries include making assertions about the end state
of the program and having Rosette provide assign-
ments for the symbolic values so that the assertion
is satis�ed, or alternatively �nd a counterexample to
the assertion (assuming it was invalid). We were not
able, however, to replace portions of our code with
Rosette's �holes� and replace those holes with syn-
tactic expressions from our input language. Never-
theless, we have a good foundation moving forward
for solving this problem.

2 Methodology

In this project we followed the paradigm presented
in this course's �rst homework assignment which
demonstrated Rosette as a solver-aided programming

1

language. To that end, we designed a DSL (domain-
speci�c language) to simulate features of a concur-
rent programming language, using as a starting point
the toy language Imp (Winskel 1993), which we have
termed conimp. We present the grammar for conimp
in Table 1. Our main contributions to the language
were adding the par and atomic operators which
give us the semantic notion of concurrency, and an
interpreter which o�ers a way to simulate a non-
deterministic environment. With these additions, we
simulated a form of concurrency by being able to in-
terleave commands at the will of a scheduler built
into our interpreter. We will elaborate on the design
of our language by using the following code snippet
as an example. It is based on a midterm question
used in the CS170 class.

2.1 Imp as a DSL

Rosette requires the user to provide a speci�cation
language that it can use to lift and convert into logi-
cal SMT formulas. We chose Imp because it a�orded
the basic features necessary to test concurrent seman-
tics, namely integer arithmetic and logical sequenc-
ing. There are a number of examples and tutorials
using custom DSLs in the lectures of James Bornholt
and Emina Torlak. These however used fairly simple
languages and could not ultimately provide the level
of detail we needed to employ Rosette to any degree of
utility with our own concurrent language. We present
in Listing 1 a basic example of the features of conimp.
In the example we create two threads that each in-
crement two global data values, with some of those
increments being locked under a so-called �mutex�.
The listing serves as a basis for our experimentations
with the solver features a�orded by Rosette as well.

2.1.1 Big-Step Semantics

We �rst implemented Imp using a big-step style se-
mantics. The big-step style is exempli�ed by hav-
ing a simple recursive function evaluate all terms in
a given expression until termination (Huttel 2010).
Most of the examples we found that de�ned a DSL
to feed into Rosette were given similarly uncompli-
cated, big-step style semantics. This can be straight-

par A0 A1 with G = { A -> 5, B -> 50 }

(define A0 (list

(: (load 'A 'a)

(: (:= 'a (add 'a 1))

(: (store 'a 'A)

(: (atomic

(list (: (load 'A 'a)

(: (:= 'a (add 'a 1))

(: (store 'a 'A)

(: (load 'B 'b)

(: (:= 'b (add 'b 1))

(store 'b 'B))))))))

(halt)))))))

(define A1 (list

(: (atomic

(list (: (load 'A 'a)

(: (:= 'a (add 'a 1))

(: (store 'a 'A)

(: (load 'B 'b)

(: (:= 'b (add 'b 1))

(store 'b 'B))))))))

(halt))))

Listing 1: Two threads concurrently updating a
global store (conimp).

forwardly accomplished by giving the terms of the
language as ground functions of integer arity and then
pattern matching over them. The advantages of this
approach are its simplicity and ease of setup. There
are disadvantages though in how the evaluation pro-
cedure is a monolithic function call. That is, there
was no way to inspect a single step of the evaluation,
which is necessary to do more complicated control-
�ow procedures. In practice, any meaningful exten-
sion of a toy programming language should evolve
beyond a big-step style, or natural, semantics.

2.1.2 Small-Step Semantics

To remedy the above shortcomings, we realized we
needed to adopt a more granular approach to eval-
uating expressions (Fernandez 2004). The program-
ming languages community de�nes an analogue to
the big-step style, appropriately termed �small-step
semantics.� In this protocol, the recursion is modded

2

Arithmetic Expression e ::= e+ e | e− e | e ∗ e | v | n
Boolean Expression b ::= ¬ b | b ∧ b | e = e | e ≤ e | true | false

Command c ::= v := e | load g v | store v g
| if b then c else c | while b do c
| c ; c | atomic c | par c | skip | halt

Local Variables v ∈ V
Global Variables g ∈ G

Integer n ∈ Z

Table 1: Concurrent Imp DSL grammar.

out and each pattern match, instead of destructing a
given term, constructs a data structure representing
the state of the overall evaluation. A common notion
of state used in the literature comes from the notion
of an abstract machine (Huttel 2010).

Abstract machines are an approach to operational
semantics that centralize the notion of registers, so
that temporary evaluations of code, ad future di-
rections of evaluation, are stored in registers as if
they were stacks. The tradition began with Pe-
ter Landin's SECD machine and was redesigned
by Matthias Fellesen under the CESK moniker, an
acronym that stands for (C)ontrol, (E)nvironment,
(S)tore, (K)ontinutation. We adopted the CESK ap-
proach to rebuilding our interpreter in the small-step
style.

Intuitively, the C stack keeps the expressions cur-
rently being evaluated, the E and S stacks keep track
of variable assignments, while the K stack maintains
partially evaluated code that will be referenced later.
As an example, in the implementation of the while
loop function, we can think of the entire while loop
expression residing on the C stack. It can be pattern
matched over to split the command into two pieces,
a boolean test and the set of possible commands to
execute based on the test returning true or false. We
may put the boolean test on the C stack and the rest
on the K stack, then proceed to evaluate the boolean
test alone. Based on the result of that test we may
pop the K stack to the appropriate command, re-
garding the alternative option. It is this interplay
between the C and K stack, being able to store ref-
erences to code with a placeholder value waiting on
a future computation, that a�ords more complicated

�ow of control.

2.1.3 Par and Atomic

After reimplementing our language as an abstract
CESK machine, we had only really mimicked the
functionality that we already had with the big-step
semantics. However, we could implement the par and
atomic functions in the above style.
Figure 1 shows the small-step semantics for the

par operator. In our implementation, we actually
combined the interpreter and the semantics for the
par function. We designed it to randomly choose
between a set of commands (implicit threads) and
evaluate the command list a single step recursively.
After each step, the interpreter would be back to ran-
domly choosing a command branch. In this way we
could interleave commands at a more granular level
and simulate multiple branches of code running in
parallel.
There must be a duality with the par function how-

ever, which is the user's ability to constrain parallel
evaluation, an ability to tell the interpreter that a cer-
tain region of code may not be parallelized, or must
be run sequentially, in an uninterruptible fashion. We
adopted the operator atomic for this purpose. The
user writes the atomic keyword followed by a Racket
list of expressions. If the interpreter sees the atomic
keyword it circumvents the parallel choice and contin-
ues until the list of expressions have been evaluated.
There is a subtle distinction between providing the

semantics for a concurrent programming language
and simulating its behavior. We thus note the dif-
ference between the pattern matching rules we pro-
vide for our syntax and the interpreter which selects

3

expressions of code to evaluate. The interpreter im-
plements a simple �scheduler� which in our case is a
random choice among expressions. By providing an
interpreter ourselves, we gain the ability to run ex-
ample code sequences. Without such a function, we
would have to manually construct a given �run� of
the code.

〈S1, s〉 ⇒ 〈S′
1, s

′〉
〈S1 par S2, s〉 ⇒ 〈S′

1 par S2, s′〉
Par

1

〈S1, s〉 ⇒ s′〉
〈S1 par S2, s〉 ⇒ 〈S2, s′〉

Par
2

〈S2, s〉 ⇒ 〈S′
2, s

′〉
〈S1 par S2, s〉 ⇒ 〈S1 par S′

2, s
′〉
Par

3

〈S2, s〉 ⇒ s′〉
〈S1 par S2, s〉 ⇒ 〈S1, s′〉

Par
4

Figure 1: Semantics for the par operator in conimp

(adapted from Huttel (2010)). For clarity, the rules
evaluate over two threads�S1 and S2�but our im-
plementation generalizes for any number of threads.

3 Evaluation

We evaluate the implementation of conimp on List-
ing 1, which is emblematic of a typical race condi-
tion. The evaluation proceeds by employing con-
structs in the Rosette language to facilitate solver-
based queries. That is, we treat the detection of race
conditions as a solver-based query, which Rosette ex-
cels at solving. This illustrates the dual ability of
our interpreter to handle concurrency through the
par operator and our language's ability to be instru-
mented by the Rosette framework. We conclude by
reexamining the race condition example with an eye
to real world implementation details.

3.1 Rosette Integration

Rosette takes expressions in the DSL annotated with
Rosette constructs for symbolic values. The anno-
tated code is then lifted into Rosette's internal lan-
guage that a�ords functions for common tasks utiliz-
ing SMT solvers. The three most common are solv-
ing, veri�cation, and synthesis. In the �solve� case,
the user code has expressions replaced with symbolic
values, and is additionally given an assertion for what
the code should do or compute to. Rosette uses the
backend SMT solver to �nd values for the symbolic
variables to evaluate the expressions in a way that
satis�es the assertion. It can be thought of as a
simplistic form of synthesis. For the �verify� case,
Rosette looks for a way to �ll in the symbolic vari-
ables to �nd a counterexample to the user code's as-
sertion. Finally, in the �synthesis� case, the user code
is additionally given �holes� replacing whole expres-
sions along with a speci�cation for behavior. Rosette
employs its solver to �nd candidate expressions in the
DSL for the holes that maintain the speci�cation. We
found Rosette readily capable of solving and verify-
ing expressions. Unfortunately, we were not able to
synthesize program holes with Rosette.

3.2 Solving and Verifying

The goal in both solving and veri�cation queries is to
have the SMT solver search for values to �ll in sym-
bolic variables that satisfy a set of logical formulas.
In our case, the logical formulas are our assertions
about the end state of running our program, which
in the running example, is just a set of two integer
equations. We assert the state of two integer coun-
ters in a global store at the outset of the program,
and then at the end of the program, noting that they
should have been incremented a certain number of
times. The example puts some increments inside of a
locked atomic region, so there is a sort of race each
thread performs in trying to access the global store.
This race can result in the increments outside the
atomic region being lost, and thus there are multi-
ple possible end states for the program. We replace
the sensitive components in our program with sym-
bolic values, which come from the Rosette language,

4

so that we can de�ne our logical formulas in the as-
sertion about the program's end state. The program
along with its assertion is then passed to a Rosette
function that employs its solver backend to answer
the query. An example of the solve query is presented
in Listing 2.
Our program state consists of integer variables in a

global hash table, and we generate two symbolic inte-
gers. The �evaluate,� �solve,� and �assert� keywords
additionally come from Rosette. The logical assertion
about our program behavior follows the �assert� key-
word. Running Listing 2 over the Listing 1 example,
with the increments of 1 replaced by the symbolic x
and y variables, results in a list, sure enough, of �(1
1)� indicating Rosette found a way to supply values
for the variables in a way that made the assertion
true.
The code in Listing 2 can be altered for the veri�-

cation case. In that case we keep the same symbolic
variable replacements, but change the word �solve�
for �verify� and instead make the assertion something
untrue. Again, running the example has Rosette pro-
duce a list with assignments for the symbolic vari-
ables that prove the assertion false. We were able
in both cases to replace the integer values of the in-
crements, as well as the initial global store values to
get the desired behavior. While the examples demon-
strated are somewhat trivial, they form a solid foun-
dation for future studies in veri�cation of concurrent
programs written in conimp.

3.3 Synthesis

We used Rosette language features, namely symbolic
values, in our own language to make use of the solv-
ing, veri�cation, and synthesis capabilities Rosette
a�ords. Speci�cally, we were able to replace basic ex-
pressions in our language with symbolic values, along
with an assertion about the behavior of the program
at its end state, and have Rosette compute assign-
ments for those symbolic values to satisfy the asser-
tion. We were also provided false assertions about
the behavior of the program and were able to have
Rosette determine appropriate counterexamples. We
did not unfortunately use Rosette to synthesize miss-
ing pieces of our test code with the more expressive

�hole� construct, as opposed to mere symbolic val-
ues. This, we speculate, is due to the complicated
nature of conimp. It is not obvious what the near-
est logic for the language should be, and we did not
give Rosette any sort of logical speci�cation about
how the program was to behave. This comes for free
in a lot of simpler examples where the DSL is essen-
tially a re�ection of the logic itself, be it integer linear
arithmetic or quanti�er-free boolean formulas.

3.4 The Example Program Revisited

The example in Listing 1 above is based on a similar
example written in C for the CS170 class (shown in
Listing 3). The class example is designed to show
that there is a data race for the integer assignment
in thread 1 that is not locked by the mutex. Techni-
cally, it is possible for thread 1 to begin the integer
assignment expression, then because it accesses data
outside of a mutex, it could be pre-empted, or in-
terrupted, by thread 2, which begins modifying the
data inside its own locked region. Thread 1, when it
regains control of the CPU, will begin a logical line
down from the initial line and so the integer assign-
ment will be lost. This suggests at least two possible
pathways for the code. In fact there are 3, with the
third following the above logic but for the opposite
interruption scheme.
There is a sense then in which Listing 1 is a sub-

tly inexact rendering of Listing 3, stemming from the
fact that there is no way for our interpreter to race
the threads. It is only capable of interleaving states.
The code in Listing 3 trades on a more complicated
notion of execution where threads have a notion of
ownership. A given thread owns the CPU while it
is executing, and by proxy, any global data. Own-
ership can be preempted and in this case a thread
will abandon a region of code that it was running.
That is to say, there is a wholly separate semantics
for thread ownership, or data ownership that we have
not programmed into our language. The concept of
data races such as this have been studied, for in-
stance in the Rust programming language (Matsakis
and Turon 2018) where ownership is built into the
type system itself. It is not immediately clear how
we could add this to our language without adopting

5

(define test -k (hash -set (hash -set (hash) 0 (list)) 1 (list)))

(define global -senv

(hash -set (hash -set (hash) 'A 5) 'B 50))

(define -symbolic x y integer ?)

(define test -se

(hash -set (hash -set (hash -set (hash) 0 (hash)) 1 (hash)) 'global global -senv))

(evaluate (list x y)

(solve

(assert (let ([g (hash -ref (parrun (hash -set (hash -set (hash) 0 A0) 1

A1) test -se test -k) 'global)])

(and (or (= (hash -ref g 'A) 7) (= (hash -ref g 'A) 8))

(= (hash -ref g 'B) 52))))))

Listing 2: Setup and Test Environment.

types, nor how we would have our interpreter sim-
ulate the race without some sort of a clock signal.
This reinforces the distinction made earlier about im-
plementing speci�c program behaviors in the object
language or in the interpreter. Nevertheless, both are
interesting possible extensions to conimp.

4 Conclusion

At the conclusion of the CS292C class, we extended
the toy language Imp by providing language con-
structs for executing commands in parallel as well as
dually preventing parallel execution for speci�c re-
gions. The parallelism is based on the ability to in-
terleave single steps of execution of expressions based
on non-deterministic choice. Re�ecting a central ten-
sion language designers face, between incorporating
functionality into the host, or meta-, language and
the object language, we chose to write a minimalistic
interpreter for the language which implemented the
non-deterministic choice between expressions. The
interpreter gave us the ability to run our code as
well as instrument it with Rosette. We could not
get synthesis to work with our toy language, due to
our sparse knowledge of Rosette internals and lack of
documentation, as well as due to a possible gap in se-
mantic information about our language that we could

even provide to Rosette. We have however identi�ed
ways forward to ultimately make synthesis for conimp
go through.

4.1 Future Work

Going forward with this work, the main goal is to get
synthesis working. To that end, there are two obsta-
cles that must be addressed. The �rst is our lack of
familiarity with the internals of Rosette. The error
messages Rosette gives often amount to �unsat�, with-
out any instrumentation context or traceback as to
what was happening internally that caused this out-
come. To some extent this is a feature of Racket as
well, namely that as a fairly minimal language based
o� the lambda calculus, a lot of the errors amount to
the unhelpful observation that �application: is not a
procedure.� The second obstacle is the current ab-
sence of a logical speci�cation language for our pro-
gram, or a more detailed semantics about how things
should behave. There is work by E. Allen Emerson in
this �eld. In Emerson and Samanta (2011), E. Allen
Emerson and Roopsha Samanta adopt the approach
of specifying regions of code as state in a �nite-state
automaton where the regions are one of �non-critical�,
�trying�, and �critical�. These regions are considered
states in the graph while the edges between them re-
�ect code sequencing and are annotated by logical

6

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <pthread.h>

int A;

int B;

pthread_mutex_t Lock;

void *

Thread_1(void *arg)

{

A++;

pthread_mutex_lock (&Lock);

A++;

B++;

pthread_mutex_unlock (&Lock);

pthread_exit(NULL);

return(NULL);

}

void *

Thread_2(void *arg)

{

pthread_mutex_lock (&Lock);

A++;

B++;

pthread_mutex_unlock (&Lock);

pthread_exit(NULL);

return(NULL);

}

int main(int argc , char *argv [])

{

pthread_t t1;

pthread_t t2;

int err;

pthread_mutex_init (&Lock ,NULL);

A = 5;

B = 50;

err = pthread_create (&t1 , NULL ,

Thread_1 , NULL);

err = pthread_create (&t2 , NULL ,

Thread_2 , NULL);

pthread_join(t1 , NULL);

pthread_join(t2 , NULL);

printf("A: %d, B: %d\n",A,B);

pthread_exit(NULL);

return (0);

}

Listing 3: Two threads concurrently updating a
global store (C).

formulas. The formulas specify properties such as
�deadlock free�. We would like to adopt this strategy
as our speci�cation language; however, it represents
a substantial amount of developer time.
If we can get synthesis working, it would �nally be

possible to write a backend component of our project
which mechanically translates synthesized code into
the C language. This would further enable evalu-
ation of generated code against hand-written code
from the CS170 class as well as classic problems in
concurrency. Most likely, this would be based on
translating synthesized structures into pthreads im-
plementations for locks and mutexes, and the class's
kthreads library for semaphores. There is further
work to be addressed in synthesizing non-preemptive
versus preemptive threading code. We think there is
utility in pursuing the project to this point, both as
an educational tool for the operating systems class, as
well as for operationalizing the Emerson and Samanta
semantics, to determine if this is a viable method for
synthesizing concurrent code for non-trivial software
tasks.

References

E. Emerson and Roopsha Samanta. An algorithmic
framework for synthesis of concurrent programs.
pages 522�530, 10 2011. doi: 10.1007/978-3-642-
24372-1_41.

Kostas Ferles, Jacob Van Ge�en, Isil Dillig, and
Yannis Smaragdakis. Symbolic reasoning for
automatic signal placement. In Proceedings

of the 39th ACM SIGPLAN Conference on

Programming Language Design and Imple-

mentation, PLDI 2018, pages 120�134, New
York, NY, USA, 2018. ACM. ISBN 978-1-
4503-5698-5. doi: 10.1145/3192366.3192395. URL
http://doi.acm.org/10.1145/3192366.3192395.

Maribel Fernandez. Programming Languages and Op-
erational Semantics. King's College Publications,
London, England, 2004.

Hans Huttel. Transitions and Trees. Cambridge Uni-
versity Press, New York, New York, 2010.

7

Nicholas Matsakis and Aaron Turon. The rust pro-
gramming language, 2018. Accessed: 2019-12-10.

Emina Torlak and Rastislav Bodik. A lightweight
symbolic virtual machine for solver-aided host lan-
guages. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design

and Implementation, PLDI '14, pages 530�541,
New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2784-8. doi: 10.1145/2594291.2594340. URL
http://doi.acm.org/10.1145/2594291.2594340.

Glynn Winskel. The Formal Semantics of Program-

ming Languages. MIT Press, Cambridge, Mas-
sachusetts, 1993.

8

