
Formalizing a Consensus Protocol using Dependent Session

Types

Harlan Kringen, Zachary Sisco

December 12, 2020

1 Introduction

In applied cryptography research, consensus protocols serve a primary role, describing how
multiple agents can communicate dynamically. However, consensus protocols tend to be
communicated as pseudo-code algorithms. They are presented in a traditional pencil and
paper style influenced heavily by set theory. Unfortunately this has a few negative conse-
quences. Overall, it results in a large gap between the specification and implementation
of the protocol. More specifically, it creates proofs that are hard to follow, especially for
newcomers to the field, and additionally leads to errors at the implementation level. This
paper investigates if type theory, a ubiquitous tool for describing program behavior, can
aid in formally stating, verifying, and implementing consensus protocols.

We focus specifically on two flavors of type theory, session types and dependent types.
Session types are used to describe concurrent processes. Practically, it gives types for
sending and receiving data, notions of actors or processes, as well as channels connecting
them. The modern incarnation has received a lot of attention under the banner ”multiparty
session types.” [2]. The second extension is inspired by dependent type theory, an extremely
general system built by adding to a simpler type theory the quantifiers from first-order logic,
∀ and ∃.

The existing research on such a type system is still very theoretical. While dependent
types are well-represented in theorem provers like Coq and Agda, session types are much
less so. To solve this, we focus exclusively on a prototype of this language, postponing an
actual implementation until more work can be done. In this paper, we derive a type system
based on multiparty session types with a small extension to allow dependent types in a
particular component, namely message transfer. We further use our type system to give
a description of the Dolev-Strong protocol and evaluate the advantages and disadvantages
of writing code in this language. Finally, we suggest how this type system can lead to
practical code, and consider impediments to making this approach more common in the
applied cryptography and blockchain communities.

2 Background

Type theory itself is a foundational approach to computer science. Despite its abstraction,
most programmers and researchers are in fact familiar with a simplified form of it. This

1

is because type theory underlies most statically typed languages, for instance Java and
Haskell, and guards against errors like 2 + ’a’. But whereas common types are string

and integer, they could be arbitrarily complicated entities, such as “will never go below
zero” or even “can be composed with a process on the left then terminate”. We explain
briefly the two major branches of type theory that we will use to express our prototype
language, namely session types and dependent types.

2.1 Session Types

Session types describe concurrent communication between processes [2]. Session types
capture the notion of a protocol by giving operations for sending and receiving data over
channels, and internal and external choice. Because session types describe concurrent
process, much of the focus is on properties like safety, termination, and deadlock freedom.
Network protocols like HTTP and SMTP can naturally be expressed as session types.

Figure 1 gives a visualization of an example two-party session type. This example
describes a “buyer-seller” interaction between a book seller and a customer. The visual-
ization shows the back-and-forth interaction of each actor sending and receiving messages.
To start, the buyer sends a book title to the seller. Upon receiving a title, the seller sends
the buyer a quote. The buyer then has a choice to accept the quote—sending their address
to the seller—or quit the interaction. The syntax for the types of the buyer and seller are
at the bottom of Figure 1. The terms !x and ?x stand for sending or receiving some data
x, respectively. Note that the session types for the buyer and seller are duals of each other.
That is, whenever the buyer sends something (!String), the seller must receive it (?String).

Figure 1: Binary session types, buyer-seller example [8].

Given the similarities between session types and protocols, we choose session types as
the basis of our type system for describing consensus. However, alone we found session

2

types are not expressive enough to represent more detailed reasoning about the data being
sent over channels. To address this, we augment multiparty session types with dependent
types.

2.2 Dependent Types

Dependent types include the quantifiers from first-order logic ∀ and ∃. In the field of
type theory, they are recognized as very expressive and general. Algorithmically, adding
quantifiers allows us to create types where the consequent depends on the antecedent. This
is best seen in an example:

∀x ∈ Z, x < 5

The above is the type of numbers that are integers (the consequent) that depend on
the antecedent, a specific integer x, being less than 5. For our purposes, allowing our
types to depend on certain terms allows us to keep track of where the messages came from,
and whether or not they have specific qualities, such as length being less than a certain
constraint. In fact, much of the Dolev-Strong protocol trades on these sorts of dependencies
between senders and receivers. Actions like, ”given Player 1 received message from Player
2, check length, proceed to send,” are standard, and without dependent types, would be
very difficult to describe. Most likely, they would force the creation of internal state and
bookkeeping.

Given the high degree of generality of dependent types, it is possible to describe sessions
with dependent types alone [1]. To this end, it would be interesting to look into ways of
constraining the expressiveness, or alternatively, being clearer about how session types fit
into the more abstract setting. Our approach is a first pass at combining the two concepts
and we should look at minimizing the differences in the future.

3 A Prototype Language

3.1 DuSTy

We derived inspiration for our language DuSTy (Dependent Session Types) from [1,4,5,7].
It is worth noting only [7] combines both dependent and session types. However, we
primarily used [2] as the basis for DuSTy, borrowing the same structure of a global type
syntax that projects onto a local type syntax. In this organization, the local types are most
similar to the language’s type system, while the global types work like macros which are
converted to local types at compile time. The global types offer the ability to describe the
protocol from a top-down perspective, including all information absolutely needed. The
global type is then specialized per actor to the type of that actor. Code that conforms to
these local types will then be formally verified. We changed very little about the local type
syntax—only adding Π and Σ types, universal and existential quantification, respectively—
and reproduce it in Appendix A Figure 7. The local type syntax must reflect a term
language, which is also more or less unchanged from [2]. We reproduce this term language
in Appendix B.

From [2] we make a small addition as seen in Figure 2 by adding dependent message
transfer (bind). This builds on the existing message transfer mechanism by allowing the

3

type of the transfer to depend on the message itself, e.g. where it originates, its length,
etc.

〈G〉 ::= p→ p′ : k〈U〉.G′ message transfer
| p→ p′ : k{lj : Gj}∀j ∈ J external choice
| p→ p′ : k.bind(λt : S.G)G′ dependent transfer
| G,G′ parallel
| t variable
| ite B G1 G2 internal choice
| end end

〈U 〉 ::= S | T@p

〈S 〉 ::= bool | nat | Vec | . . . | 〈G〉

Figure 2: Global type syntax.

Adding infrastructure to the global type syntax requires specifying what can be rep-
resented down in the local type syntax. This is done by means of a projection function.
The projection function takes a global type and an actor (or process) and determines what
the global type looks like from that actor’s perspective. To ensure we could make use of
dependent types, we created the bind construct at the global level and project it onto Π
and Σ at the local level. This requires adding the dependent type constructors Π and Σ to
the local language used in [2]. However, this addition is fairly standard and we follow [6].
We give the projection function in Figure 3.

(p1 → p2 : k.bind(λt.G′)) \ p ::=

k.(Π(λ.(G′ \ p)) if p = p1 6= p2

k.(Σ(λ.(G′ \ p)) if p = p2 6= p1

(G′ \ p) if p 6= p2 and p 6= p1

(ite b g1 g2) \ p ::=

(g1 \ p) if b = true

(g2 \ p) if b = false

Figure 3: Global-to-local projection function.

To build the Dolev-Strong protocol we need a few extra operators, such as the repeat
function, which runs a global protocol for some finite number of times. We show this
function in Equation 1.

repeat(n : Int, g : G) ::= ite (n > 0) (g.repeat(n− 1, g)) (end) (1)

4

• Round 0: Sender sends 〈b〉1 to every node.

• For each round r = 1 to f + 1: For every message 〈b〉1,j1,j2,...,jr−1 node i receives
with r signatures from distinct nodes including the sender:

– If b /∈ extri: add b to extri and send 〈b〉1,j1,...,jr−1,i to every node.

• At the end of round f + 1: If |extri| = 1: node i outputs extri; else node i outputs
⊥.

Figure 4: The conventional definition of the Dolev-Strong protocol [3].

3.2 The Dolev-Strong Protocol

With our expanded type language, we are able to express the Dolev-Strong Protocol.

3.2.1 Classical Formulation

To review, the conventional formulation of Dolev-Strong is given in Figure 4. The Dolev-
Strong protocol proceeds by round, where in the initial round, a designated sender broad-
casts a message to all nodes in the network. In the following rounds, whenever a node
receives a message it checks if the message is valid (inspecting the number of distinct sig-
natures on the message chain), adds the bit to their own “extracted set”, and then signs
the message themselves and rebroadcasts it. After the last round, all nodes output the bit
in their final message (if there is only one unique element in their extracted set), otherwise
they output a default value ⊥—indicating an indeterminate result. Figure 4 reproduces
the Dolev-Strong Protocol as presented in [3].

3.2.2 DuSTy Version

Writing up the Dolev-Strong Protocol in DuSTy results in a very long type. For the
sake of presentation, we present only the most interesting component in Figure 5. This
corresponds to the second step in the classical formulation, and captures the fact that
each actor receives a message, and to forward it along, must check that the message has a
specified length and does not express more than one unique bit. We produce an expanded
version of the protocol in Appendix C.

In Figure 5, the type wraps the core step of Dolev-Strong in a repeat over k, where k is
the number of rounds. The proceeding line presents an interaction between General0 and
General1 as a dependent message transfer. The bind term introduces a message m received
by General1 and the conditional operator ite evaluates the condition checking whether m
is valid. If it is, General1 signs and rebroadcasts the message. This is enforced at the type
level by asserting that the length of the message sent must be 1 longer than the original
received message.

We can see the use of bind in the global type. This will project down as a Π in the case
of a dependent send and dually as a Σ in the case of a dependent receive. Because these
are dependent types, they both allow their type to depend on terms in the language. In
this case, the type of an actor sending a message depends on the qualities expressed under

5

Dolev-Strong ::=

DS-Input .

repeat(k,

General0 → General1 : chan0,1.bind(λm : Msg.

ite (len(m) < k ∧ size(set(m)) > 1)

General1 → General2 : chan1,2〈msg(len(m) + 1)〉,
General1 → General3 : chan1,3〈msg(len(m) + 1)〉,
General1 → General0 : chan1,0〈msg(len(m) + 1)〉
⊥

. . . . end)

Figure 5: This portion of the global type represents the second step in the Dolev-Strong
Protocol.

Dolev-Strong \ General0 =

Σ(msg(1), chan0,1).Σ(msg(1), chan0,2).Σ(msg(1), chan0,3).

Π(msg(2), chan0,1).Π(msg(2), chan0,2).Π(msg(2), chan0,3).

Σ(msg(3), chan0,1).Σ(msg(3), chan0,2).Σ(msg(3), chan0,3).

. . .

Π(msg(j), chan0,1).Π(msg(j), chan0,2).Π(msg(j), chan0,3).

Σ(msg(j + 1), chan0,1).Σ(msg(j + 1), chan0,2).Σ(msg(j + 1), chan0,3)

. . .

Figure 6: This demonstrates projecting the global Dolev-Strong type onto an actor.

the λ term. We use ellipses as a notational device to avoid writing every case for every
actor. Figure 6 shows the projection of Dolev-Strong on General0.

3.3 Discussion

With the fully written Dolev-Strong protocol we are in a position to evaluate the utility of
DuSTy. Writing down the specific type of the protocol yields a number of insights about
the structure of consensus protocols.

In the first place, illustrating consensus as a type makes the network structure apparent.
The types precisely capture who is talking to who and under what conditions. Encoding
this at the type level provides the sender/receiver duality required of session types, and
should guarantee deadlock freedom. Overall this enables easier reasoning about network
synchronicity, as we can observe the beginning and end of the round structure more easily.

Importantly, however, we do not have enough information to reason about data flowing

6

through the protocol itself. To show larger proofs about consensus agreement and validity
requires more involved reasoning about messages and their behavior. This makes it more
difficult to determine the agreed upon value after running the protocol. We think addressing
this could come from a finer-grained approach to representing message information at the
type level, or representing the protocol type itself as an inductive object, which would make
it more amenable to traditional functional programming techniques.

We also note that representing dishonest, colluding actors is non-trivial. While our
current type allows implementing code where actors can perform dishonest actions, such
as not sending messages, covering all possible colluding cases is difficult at the type level
without deeper introspection into the messages carried over channels.

Finally, we note that writing the protocol as a type exposes some assumptions built
into its presentation as a proof. For instance, the actors at the end of the protocol must
reveal their chosen bits. However, in the context of a program, one must ask where this
happens. Do the actors broadcast this information, or send it to a trusted third party?
This effectively brings up the idea of a protocol as having input/output ports. Data must
still make its way into a safe protocol and then make its way out. Writing protocols as
types then reifies this notion and forces protocol designers to be explicit about the dataflow
itself.

We think types are a good fit to capture the dynamic nature of protocols in applied
cryptography. This is a fairly new area, however, and much work needs to be done to decide
on a reasonable foundation for such a type system, as well as substantial engineering work
to build a real-world language for implementing and testing these ideas. In the future we
would be very interested in building some of these ideas in a theorem prover.

4 Conclusion

We presented a language with dependent multiparty session types to formally specify con-
sensus protocols. We demonstrated our type system by showing how to express the Dolev-
Strong protocol as a global type, projecting its local types on different actors. This is
a novel approach to specifying consensus protocols that minimizes the gap between the
specification and the implementation.

Our type system succeeds at capturing the “network topology” of a consensus protocol—
that is, who communicates, and in what order. It does not, however, keep track of the
messages sent through the system. This makes it difficult to reason about desired properties
like validity and agreement, and is one drawback of a type-driven approach to specifying
consensus protocols. To prove claims about these properties requires expressing a consen-
sus protocol as some kind of inductive type—although it is not immediately clear how this
would proceed.

Overall, types appear to be a promising candidate for protocols. However, as we found
during this work it takes a sophisticated type system to just express the topology of the
network. Further, general-purpose programming languages lack support for either depen-
dent or session types. Some implementations exist as academic software, but only one
combines both dependent and session types in the way we have [7]. In general, there needs
to be more focus on moving session and dependent types into usable general-purpose pro-
gramming languages. Going forward we would be like to move this work off paper and

7

into a mechanical theorem prover like Agda or Coq and pursue efficient code generation
for consensus protocols.

References

[1] Daniel Gustafsson and Nicolas Pouillard. Dependent protocols for communication.
Preprint at https://nicolaspouillard.fr/publis/dep-proto.pdf. Last accessed
December 11, 2020.

[2] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. J. ACM, 63(1), March 2016.

[3] Elaine Shi. Foundations of Distributed Consensus and Blockchains. Preliminary draft,
2020.

[4] Peter Thiemann and Vasco T. Vasconcelos. Label-dependent session types. Proc. ACM
Program. Lang., 4(POPL), December 2019.

[5] Bernardo Toninho, Lúıs Caires, and Frank Pfenning. Dependent session types via
intuitionistic linear type theory. In PPDP’11 - Proceedings of the 2011 Symposium on
Principles and Practices of Declarative Programming, pages 161–172, 01 2011.

[6] David Walker. Substructural Type Systems. In Advanced Topics in Types and Pro-
gramming Languages. The MIT Press, 12 2004.

[7] Hanwen Wu and Hongwei Xi. Dependent session types. CoRR, abs/1704.07004, 2017.

[8] Nobuko Yoshida. Multiparty asynchronous session types. Accessed: 2020–11-01, 2015.

Appendix A Local Type Syntax

〈T 〉 ::= k ⊕ {li : Ti}∀i ∈ I
| k&{li : Ti}∀i ∈ I
| t
| end
| Π(t : T, k).T ′

| Σ(t : T, k).T ′

Figure 7: Local type syntax.

Appendix B Term Syntax

Appendix C Full Dolev-Strong Protocol

8

〈P 〉 ::= a[2..n](s).P multicast session request

| a[p](s).P session acceptance

| s!〈e〉; P value sending

| s?(x); P value reception

| s!〈〈s〉〉; P session delegation

| s?((s)); P session reception

| sC l; P label selection

| sB li : Pii∈I label branching

| if e then P else Q conditional branch

| P ‖ Q parallel composition

| 0 inaction

| (νn)P hiding

| def D in P recursion

| X〈es〉 process call

| s : h message queue

e ::= v | e ∧ e′ | ¬e ... expressions

v ::= a | true | false values

h ::= l | v | s messages-in-transit

D ::= {Xi(xisi) = Pi}i∈I declaration for recursion

Figure 8: Term syntax.

9

DS-Input ::=

General0 → General1 : chan0,1〈Msg〉.
General0 → General2 : chan0,2〈Msg〉.
General0 → General3 : chan0,3〈Msg〉

Dolev-Strong ::=

DS-Input .

repeat(k,

General0 → General1 : chan0,1.bind(λm : Msg.

ite (len(m) < k ∧ size(set(m)) > 1)

General1 → General2 : chan1,2〈msg(len(m) + 1)〉,
General1 → General3 : chan1,3〈msg(len(m) + 1)〉,
General1 → General0 : chan1,0〈msg(len(m) + 1)〉

⊥
General0 → General2 . . .

. . .

General1 → General3 end)

DS-Output ::=

General0 → S : chan0,S〈Msg〉.
General1 → S : chan1,S〈Msg〉.
General2 → S : chan2,S〈Msg〉.
General3 → S : chan3,S〈Msg〉.
S→ General0 : chan0,S .bind(λm : Msg.

ite (len(traverse m) = 1)

S→ General0 : chan0,S〈first(m)〉
⊥

Figure 9: The fully specified type for the Dolev-Strong protocol.

10

