
UNIVERSITY of CALIFORNIA
Santa Barbara

Automated Reasoning for Agile and Robust Chip Design

A Dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Computer Science

by

Zachary David Sisco

Committee in Charge:

Professor Ben Hardekopf, Co-Chair
Professor Jonathan Balkind, Co-Chair
Professor Timothy Sherwood
Professor Zachary Tatlock, University of Washington

June 2025

The Dissertation of Zachary David Sisco is approved.

Professor Timothy Sherwood

Professor Zachary Tatlock, University of Washington

Professor Jonathan Balkind, Committee Co-Chair

Professor Ben Hardekopf, Committee Co-Chair

June 2025

Automated Reasoning for Agile and Robust Chip Design

Copyright © 2025

by

Zachary David Sisco

iii

Dedication

To my parents and brothers.

To Linda and Eric for the Thanksgivings away from home.

To Jeremy for the good jams.

To Drew, we’ll make that game someday.

To Pingyuan for your love and support.

iv

Acknowledgements

I cannot enumerate all of the people—mentors, mentees, colleagues, and more—

who helped me in carrying out the research in this dissertation. I could not have done

it alone. There are a few I would like to specially thank:

BenHardekopf For guidingme through this research and helpingme honemywrit-

ing and teaching skills.

Jonathan Balkind For jumping in with us on this wild idea called “hardware de-

compilation,” and staying on! Over the years you have been an invaluable mentor in

research and navigatingmy academic career, nudgingme towardsmany opportunities

to engage with folks in the PL–Hardware community.

TimSherwood For your enthusiasm and openness to applying esoteric ideas to com-

puter architecture, and for giving me an opportunity to teach about those ideas.

Adam Bryant For introducing me to computer science research, and giving me the

chance to work with some smart folks at Galois.

Harlan Kringen For countless hours of shop talk and for being a good friend. Your

deepwells of PL theory knowledge are inexhaustible and yet somehow all trace back to

the 1970s. You have shared somuch excellent music which has become the soundtrack

to my PhD.

AndrewAlex For jumping onto the OWL project and braving the jungle of parenthe-

ses that is its Racket codebase.

v

Thanawat Techaumnuaiwit For trying (and nearly succeeding) to make me a better

developer by showing me better tools (though I’m still not using Nix).

Gus Smith For inviting me to give a talk at the UW PLSE lab that eventually kicked

off a collaboration over our shared research areas.

The UCSB PL Lab To the senior members: Mehmet Emre, Michael Christensen, and

Lawton Nichols for welcoming me into the lab. And to the current members: Harlan

Kringen, Jingtao Xia, Hitomi Nakayama, Peter Boyland, and Sarah Canto. I’ve enjoyed

sharing the lab with you all.

The UCSB Arch Lab For helping me understand what a computer is and how we

build them. And also for organizing fun events outside of the lab. A special thank you

to the folks in the lab (current and former) who I have collaborated with: Zechen Ma,

Boming Kong, Yeganeh Aghamohammadi, Pranjali Jain, and Sijie Kong.

vi

Curriculum Vitæ
Zachary David Sisco

Education

2025 Ph.D. in Computer Science, University of California, Santa Barbara.
2018 M.S. in Computer Science, Wright State University.
2014 B.S. in Mathematics, Ohio University.

Publications
Z. D. Sisco, A. D. Alex, Z. Ma, Y. Aghamohammadi, B. Kong, B. Darnell, T. Sherwood,
B. Hardekopf, and J. Balkind. Control Logic Synthesis: Drawing the Rest of the OWL.
InArchitectural Support for Programming Languages and Operating Systems, Volume 4 (AS-
PLOS). 2024.
G. H. Smith, Z. D. Sisco, T. Techaumnuaiwit, J. Xia, V. Canumalla, A. Cheung, Z. Tat-
lock, C. Nandi, and J. Balkind. There and Back Again: A Netlist’s Tale With Much
Egraphin’. Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE).
2024.
Z. D. Sisco, J. Balkind, T. Sherwood, and B. Hardekopf. Loop Rerolling For Hardware
Decompilation. In Programming Language Design and Implementation (PLDI). 2023.
H. Kringen, Z. D. Sisco, J. Balkind, T. Sherwood, and B. Hardekopf. Semi-Automated
Translation of a Formal ISA Specification to Hardware. Programming Languages for Ar-
chitecture (PLARCH). 2023.
Z. D. Sisco, J. Balkind, T. Sherwood, and B. Hardekopf. A Position on Program Syn-
thesis for Processor Development. Workshop on Languages, Tools, and Techniques for Ac-
celerator Design (LATTE). 2022.
Z. D. Sisco, A. R. Bryant. A Semantics-Based Approach to Concept Assignment in
Assembly Code. International Conference on Cyber Warfare and Security (ICCWS). 2017.
Z. D. Sisco, P. P. Dudenhofer, A. R. Bryant. Modeling Information Flow for an Au-
tonomous Agent to Support Reverse Engineering Work. Journal of Defense Modeling
and Simulation. 2017.

Awards

2024 PhD Student of the Year, Computer Science Department, UCSB.
2024 Neal Fenzi – Resonant Founder Fellowship, Resonant, Inc.
2022 2nd Place Award, ACM SIGPLAN PLDI Student Research Competition.

vii

Experience

2024–2025 Computing Fellow, College of Creative Studies, UCSB.
Summer 2024 Research Mentor, Research Mentorship Program, UCSB.
Summer 2023 Intern, Galois, Inc.
2020–2023 Research Assistant, UCSB.
2016–2018 Research Assistant, Wright State University.
2013–2016 Programmer Analyst, Motorists Insurance Group.

Teaching – Instructor of Record

Spring 2025 UCSB CMPTG 130E: Exploring the Hardware–Software Interface.
Winter 2025 UCSB CMPTG 1L: Programming Laboratory.
Summer 2024 UCSB CS 9: Intermediate Python Programming.
Fall 2022 UCSB CS 32: Object-Oriented Design & Implementation.
Summer 2022 UCSB CS 24: Problem Solving with Computers II.
Summer 2021 UCSB CS 16: Problem Solving with Computers I.
Winter 2021 UCSB CS 16: Problem Solving with Computers I.
Summer 2020 UCSB CS 138: Automata & Formal Languages.

Teaching – Lead Teaching Assistant

Fall 2023 UCSB CS 501: Techniques of Computer Science Teaching.
Fall 2022 UCSB CS 501: Techniques of Computer Science Teaching.

Teaching – Teaching Assistant

Fall 2024 UCSB CMPTG 1L: Programming Laboratory.
Winter 2023 UCSB CS 154: Computer Architecture.
Spring 2020 UCSB CS 138: Automata & Formal Languages.
Winter 2020 UCSB CS 56: Advanced Applications Programming.
Fall 2019 UCSB CS 56: Advanced Applications Programming.
Fall 2017 WSU CS 7830: Machine Learning.
Fall 2017 WSU CS 4350: Operating System Internals and Design.

viii

Abstract

Automated Reasoning for Agile and Robust Chip Design

by

Zachary David Sisco

Modern chip design embodies enormous complexity, from general-purpose pro-

cessors to specialized hardware accelerators. With the trend towards specialization,

chip designers need techniques that let them quickly iterate over a design while fitting

into familiar programming languages and tools. However, designing a chipwith speed

and robustness remains a challenge. Chip design requires reasoning between differ-

ent layers of abstraction, however these tools do not provide mechanisms to connect

specifications with implementations to ensure correctness. Programming languages

for chip design rely on technology-specific components, but lack helpful abstractions

needed to support common deployment platforms, making it difficult to adapt and

compose designs. And further, the design ecosystem is fragmented between systems

and tool chains without the ability to interoperate.

This thesis presents my research on improving chip design tools with automated

reasoning techniques. I use program synthesis techniques to bridge the gap between

an architectural specification and a low-level hardware implementation, developing

a new technique called control logic synthesis. I establish a new field called hardware

decompilation, which is about lifting common hardware artifacts to high-level source

code, enabling design transpilation and automating the effort of re-targeting designs to

different technologies. And finally, to address challenges with technology constraints,

I developed a memory design language that uses equational reasoning techniques to

automatically target multiple memory technologies from a single interface. Through
ix

the application of these automated reasoning techniques, I opened two wholly new

areas in the chip design space enabling novel design processes that were not possible

before, improving developer agility and design verifiability.

x

Contents

Curriculum Vitae vii

Abstract ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Organization of this Document . 3

2 Control Logic Synthesis 5
2.1 Introduction . 5
2.2 Background . 9
2.3 Control Logic Synthesis Technique . 15
2.4 Case Studies . 27
2.5 Evaluation . 37
2.6 Related work . 43
2.7 Conclusion . 45

3 Loop Rerolling for Hardware Decompilation 47
3.1 Introduction . 47
3.2 The Maki Intermediate Language . 53
3.3 Loop Identification . 57
3.4 Sketch Generation for Loop Rerolling . 61
3.5 Program Synthesis for Loop Rerolling . 68
3.6 Evaluation . 72
3.7 Related Work . 83
3.8 Conclusion . 86

xi

4 A Memory Design Language for Automated Memory Mapping 87
4.1 Introduction . 87
4.2 Background . 90
4.3 Elephant for Automated Memory Technology Mapping 94
4.4 Memory Decompilation . 104
4.5 Evaluation . 112
4.6 Related Work . 121
4.7 Conclusion . 124

5 Conclusions 125

Bibliography 127

xii

List of Figures

2.1 An overview of the control logic synthesis technique. 6
2.2 The datapath diagram for a three-stage implementation of the ALUma-

chine. 12
2.3 An FSM for the accumulator machine. 14
2.4 A diagram of the overall control logic synthesis workflow. 15
2.5 The grammar for Oyster. 17
2.6 An algorithm for combining individual control logic synthesis results

together into a complete implementation. 25
2.7 PyRTL code of the generated control logic for a load word instruction

(LW) in the RV32I core. 32
2.8 The grammar for ILA decode and update expressions. 38

3.1 An accumulator circuit instantiatedwith a 4-bit ripple-carry adder writ-
ten in SystemVerilog. 50

3.2 Graph representation of a netlist for a 4-bit accumulator. 52
3.3 The grammar for Maki. 54
3.4 A selection of big-step structural operational semantics for Maki. 56
3.5 Maki representation of the 4-bit accumulator netlist. 58
3.6 A tokenized version of the 4-bit accumulator netlist. 60
3.7 Intermediate reroll sketches of an accumulator design in Maki. 63
3.8 Final reroll sketch of the accumulator design, and the rerolled designed

after program synthesis. 68
3.9 Decompiled SystemVerilog (a) and PyRTL (b) code for the 4-bit accu-

mulator. 71
3.10 Heat map of benchmark sizes for the BaseJump modules. 74
3.11 Number of loops rerolled across all BaseJump benchmarks. 77
3.12 Histograms of loop identification and rerolling performance. 80
3.13 Speedups in Verilator simulation times across all “large” versions of the

BaseJump STL modules. 82

4.1 An illustration of manual memory technology mapping. 88

xiii

4.2 The grammar for Elephant and a selection of type signatures. 95
4.3 The core elaboration rules for Elephant. 97
4.4 An illustration of the Elephant tool flow. 113
4.5 Original PyRTL implementation of the data memory, including write

masking logic, for a RISC-V core. 116

xiv

List of Tables

2.1 Control logic synthesis results over all case studies. 40
2.2 Size of designswith generated control logic compared to a hand-written

reference implementation. 42

3.1 PyRTL benchmark information. 73
3.2 PyRTL benchmark loop identification and rerolling results. 76

4.1 Memory mapping validation tests from Elephant across a range of port
configurations . 118

4.2 Memory decompilation results. 118
4.3 Large-scale case studies from OPDB. 120
4.4 BlackParrot memory decompilation results. 121

xv

Chapter 1

Introduction

The cost of designing new, specialized chips for emerging applications is too high,

with industry studies showing roughly half of development time is spent on verifica-

tion [1]. To handle the growing complexity of specialized hardware aswell as enabling

newcomers to the space with smaller teams and resources, we need new approaches

to address the current state-of-the-art in hardware development. However, modern

hardware description languages (HDLs) and electronic design automation tools have

not kept pace with the demands brought by the “golden age” of computer architec-

ture [2]. In this thesis, I address three challenges that hamper developer agility and

verifiability during the chip design process:

Multilevel Reasoning The current system-on-chip (SoC) development process suf-

fers from decoupling between all of the layers of abstraction. Enormous effort goes

into verification between the specifications, models, and implementation—the diffi-

culty being the semantic gap between these layers. Further, verification during this

process is inherently post hoc: designers write microarchitectural models, then verify;

developers write RTL code, then verify. This disjointed process leads to long design

1

Introduction Chapter 1

iterations, hindering agility and increasing verification burden.

Interoperability The growth of new HDLs and open-source hardware design tools

adds new features that improve the process of designing hardware over legacy lan-

guages and proprietary tools. However, these new languages and tools often lack the

ability the interoperate, fragmenting the communities that use them and making mi-

gration difficult, as manual porting is impractical. Limited interoperability means that

new HDLs cannot leverage the vast body of existing designs written in legacy lan-

guages, and existing designs cannot take advantage of the new features provided by

these modern tools.

Technology Constraints Languages and tools for chip design rely on technology-

specific components, but lack helpful abstractions needed to support common deploy-

ment platforms,making it difficult to adapt and compose designs. Targeting platforms,

such asASIC and FPGA, requires technology-specific code and so each new technology

being targeted requires updating an existing part of the code with multiple indepen-

dent descriptions of the same component.

The recognition of these three challenges facing chip design brings me to my thesis

statement:

1.1 Thesis Statement

The integration of automated-reasoning techniques, such as constraint solvers

and equational reasoning, into programming languages used for hardware design

improves developer agility and verifiability.

In this thesis, I will show how these techniques enable new hardware design pro-

2

Introduction Chapter 1

cesses via automated verification and program synthesis, overcoming design chal-

lenges related to multilevel reasoning, interoperability, and technology constraints.

1.2 Organization of this Document

The following describes the organization of this thesis:

Chapter 2 To address the first challenge,multilevel reasoning, I adapt program synthe-

sis techniques to languages used for chip design, bridging the gap between an archi-

tectural formal specification and a low-level hardware implementation, automating the

programming of tedious and error-prone control logic. This technique, called Control

Logic Synthesis, allows designers to quickly iterate over chips designs, focusing on the

critical design questions without getting bogged down in low-level details of control.

It is based on work published in ASPLOS 2024 [3], and LATTE 2022 [4]. This work

was done in collaboration with Andrew David Alex, Zechen Ma, Yeganeh Aghamo-

hammadi, Boming Kong, Benjamin Darnell, Timothy Sherwood, Ben Hardekopf, and

Jonathan Balkind. Specifically, Andrew David Alex contributed the compiler to gen-

erate Rosette code from ILA specifications, the AES accelerator benchmark, as well as

writing. ZechenMa, YeganehAghamohammadi, BomingKong, and BenjaminDarnell

contributed in benchmark development and case study evaluation.

Chapter 3 To address the interoperability challenge, I established a new field called

Hardware Decompilation, which is about lifting gate-level netlists to high-level code

in hardware description languages. In this work, I apply advanced program synthe-

sis and compiler techniques to the hardware domain. This work enables transpiling

designs from one language to another, automates the effort of re-targeting designs to

3

Introduction Chapter 1

different technologies, and speeds up analyses over gate-level netlists. It is based on

work published in PLDI 2023 [5], and supported by the National Science Foundation

under Grants No. 2006542, 1763699, 1717779.

Chapter 4 To address the technology constraints challenge, I developed aMemory De-

sign Language which includes a rich memory abstraction that automatically targets

many technologies from a single interface. From this memory abstraction, I show

how we can build a compiler for memories as well as a decompiler for memories from

netlists—both based on the same formalized rule set. In this work I use powerful equa-

tional reasoning techniques normally used in software compilers enabling automated

memory technology targeting, making designs more robust and reusable. The mem-

ory decompiler is a continued exploration of hardware decompilation established in

Chapter 3. It is based on work that has been submitted to a conference and is currently

under revision. I am the first author on this work, and my co-authors are Sijie Kong,

Daniel Ruelas-Petrisko, Jingtao Xia, Julian Springer, Varun Rao, Spencer Wang, Gus

Henry Smith, Ben Hardekopf, and Jonathan Balkind. In particular, Sijie Kong made

significant contributions to the implementation for the memory decompiler as well

as the dynamic programming algorithm for memory mapping with technology con-

straints. Daniel Ruelas-Petrisko helped with the BlackParrot case study and its evalua-

tion, as well as XCI ingestion. Jingtao Xia, Julian Springer, and Varun Rao contributed

parts of the memory compilation and decompilation implementation. Spencer Wang

contributed to the evaluation, validating memory mapping results. Gus Henry Smith

contributed writing about equality saturation as well as development of the abstract

memory formalization.

4

Chapter 2

Control Logic Synthesis

2.1 Introduction

Embedded SoCs are the foundation of some of ourmost critical infrastructure, con-

trolling everything from remote surgical equipment [6], to telecommunications satel-

lites [7], to access to other larger compute and storage resources [8]. In such domains,

any correctness issue could be catastrophic. To reduce cost and meet the growing de-

mand for specialised hardware, wemust find opportunities for correct-by-construction

automation of design. Our new technique, control logic synthesis, meets this goal by

freeing design engineers from writing control logic.

In this chapter, we describe a method for automatically generating correct by con-

struction control logic for embedded-class root-of-trust SoCs. Our technique generates

control logic with respect to a formal instruction set architecture (ISA) or instruction-

level abstraction (ILA) specification, with only a minimal microarchitectural model,

leaving the hardware designer free to iterate over the datapath and specification. De-

spite the leakiness of the control-datapath abstraction, we find that the datapath cap-

tures the designer’s intent and narrows the innumerable microarchitectural possibili-

5

Control Logic Synthesis Chapter 2

Final
Design

Abstraction

Control

Function
Logic
Synthesis

Datapath Sketch

Human in-the-loop

Specification

Figure 2.1: An overview of our technique: starting from anHDL sketch of the datapath

combined with a formal architectural specification to generate correct-by-construction

HDL code that completes the control logic.

ties down to a more manageable set tailored to the most important behaviors.

Wework to compose the problem in away that is tractable formodern program syn-

thesis tools (synthesizing from the entire design and specification fails even for small

hardware designs) and to handle the disconnect between the architectural specifica-

tion and the microarchitecture (pipelining being one example challenge). We focus on

the kinds of bespoke embedded SoC designs which current solver-aided techniques

can handle and where correctness is crucial.

2.1.1 The Control-Datapath Divide

Traditionally, embedded SoC design requires human reasoning about all of the be-

haviors a specific ISA/ILA might embody, down through the microarchitecture, in-

cluding optimizations such as pipelining, caching, etc., to a complete digital design.

Holding such a complex set of relationships in one’s head all at once is incredibly dif-

ficult. When adopting an existing, open design, today’s hardware designer must learn

all of this information to extend the architecture and optimise themicroarchitecture for

their domain-specific goals. To make our reasoning simpler, it is common to divide a

design roughly between a datapath (the composition of functional units that operate on

6

Control Logic Synthesis Chapter 2

data and stateful elements) and the control logic (the signals that coordinate and route

data through appropriate functional units at appropriate times). Designers typically

concentrate first on instructions’ computational action as they independently traverse

these datapaths, leaving their exact orchestration of control for later.

Of course, the control-datapath divide is imperfect as the interactions between them

and their relation to the ISA semantics can be subtle and difficult to reason about, par-

ticularly for a new or unfamiliar designer. In practice, data flows between the con-

trol and datapaths bidirectionally, thanks to matters like data-dependent control flow.

Even worse, as the designer iteratively changes either the architecture (e.g., adding

custom instructions) or the datapath (e.g., functional units or microarchitectural opti-

mizations) they must reconsider all of these interdependencies which can easily cause

pervasive and non-local changes to the control logic.

These problems are further exacerbated by the fact that testing is themost common

means for assessing an SoC design’s correctness (particularly in small, agile teams).

While formal verification techniques are adopted in industry [9, 10, 11, 12, 13, 14, 15,

16, 17], they usually involve manually creating a separate, detailed microarchitectural

model that must be updated in lockstep with the design. In contrast, our correct-by-

construction approach requires only a lightweight microarchitectural model to handle

optimizations such as pipelining in the form of a programmatic mapping from archi-

tectural state to microarchitectural components.

2.1.2 Technique Overview

Figure 2.1 gives a high-level overview of our technique: the hardware developer

provides (1) the datapath in a Hardware Description Language (HDL); (2) the ar-

chitectural specification that the hardware implements, taken from existing formaliza-

7

Control Logic Synthesis Chapter 2

tions such as ILA [18, 19, 20, 21, 22, 23] or Sail [24]; and (3) the lightweight model

connecting the datapath components to the specification, in the form of an abstrac-

tion function. Our method takes those inputs and uses program synthesis techniques

adapted from the Programming Languages community to automatically create the

necessary control logic, thus completing the hardware design (datapath + control

logic) and ensuring correctness against the specification. Control logic synthesis en-

ables hardware developers to freely modify and iterate in design of both the ISA/ILA

and the datapath without getting caught up in the abstruse details of control. Further,

it assures that the final implementation (not just a model of the design) is correct.

We focus our efforts on the design space exemplified by OpenTitan [8] (an open

source silicon Root-of-Trust): embedded-class, small, but sophisticated designs for ap-

plications requiring bespoke, highly trusted cores and accelerators (e.g., for cryptog-

raphy). We first target the core RISC-V ISA plus cryptography extensions and investi-

gate both pipelined andnon-pipelinedmicroarchitectures. Further, to demonstrate our

technique’s generality, we generate control logic for a bespoke constant-time cryptog-

raphy core and also for a cryptographic accelerator targeting the Advanced Encryption

Standard (AES). Our major contributions are:

• We introduce a novel HDL Intermediate Representation (IR) named Oyster de-

signed to be amenable toHDL-level program synthesis techniques (Section 2.3.1).

• We present an HDL program synthesis toolchain1 that takes a datapath and a

specification for ISA/ILA semantics and automatically generates HDL code that

implements the control logic (Section 2.3).

• We evaluate our toolchain on an embedded-class root-of-trust SoC design, en-

compassing a RISC-V core, constant-time cryptography core, and AES hardware
1Available as a free and open-source artifact: https://github.com/UCSBarchlab/owl

8

https://github.com/UCSBarchlab/owl

Control Logic Synthesis Chapter 2

accelerator, automatically extracting semantics from architectural specifications

written in ILA [19], and generating correct-by-construction control logic code in

the Python-based HDL PyRTL [25].

2.2 Background

Here we briefly review the concept of the control-datapath divide in hardware de-

sign and make clear specifically how we split control and datapath for the class of de-

signs we consider. We broadly define the datapath as “the functional units that define

system operations”; and control logic as “the signals that coordinate and route data

through the appropriate functional units at the appropriate times.” While in practice

the line between control and data can be blurry, to focus the scope of our control logic

synthesis technique we describe two control structures commonly found in hardware

designs: (1) instruction decoders, and (2) finite state machines (FSMs). For this pur-

pose we present small but illustrative examples of hardware designs with each type of

structure and show how we split each design into control logic and datapath.

2.2.1 Instruction-Level Abstraction

In this work, we use ILA for architectural specifications. We provide an overview

of ILA here to aid in understanding our example use cases and direct the reader to

the ILA paper [19] for a complete description. ILA provides a mechanism to function-

ally specify the hardware-software interface for both processors and accelerators. As

the name implies, the core unit of computation is modeled as an "instruction." Instruc-

tion models capture the software-visible state updates made per unit of computation.

Each instruction is specified with functions describing how it is fetched, decoded, and

how it updates state. ILA authors specify each instruction’s fetch, decode, and up-
9

Control Logic Synthesis Chapter 2

date functionality with the help of the ILA C++ library. In the case of a processor,

the instruction model is the familiar concept of an ISA instruction specification. ILA

abstracts this further by allowing the specification to rely on a wide-range of state-

variables and inputs that are not present in general-purpose ISA specifications, but are

widely used in MMIO-based accelerators. For example, one may want to trigger an

instruction only when certain criteria in its state and input values are met. ILA also

allows breaking down complex instruction into a hierarchy of smaller state updates,

which further enables reasoning about and specifying complex device interfaces.

2.2.2 Instruction Decoder Example

A common control structure is instruction decoder-style control logic. This type of

control receives an instruction or opcode as input and, based on decode logic from the

specification, sets control signals to route data through the design to correctly execute

the given operation. Consider the following ILA specification for an ALU machine:

ilang::Ila CreateAluIla() {

auto ila = ilang::Ila("alu_ila");

// args here are name and bitwidth

auto op = ila.NewBvInput("op", 2);

auto dest = ila.NewBvInput("dest", 2);

auto src1 = ila.NewBvInput("src1", 2);

auto src2 = ila.NewBvInput("src2", 2);

// name, addr width, data width

auto regs = ila.NewMemState("regs", 2, 8);

auto rs1_val = ilang::Load(regs, src1);

auto rs2_val = ilang::Load(regs, src2);

10

Control Logic Synthesis Chapter 2

auto ADD = ila.NewInstr("ADD");

{

ADD.SetDecode(op == BvConst(1, 2));

auto res = rs1_val + rs2_val;

ADD.SetUpdate(regs, ilang::Store(regs, dest, res));

}

// similar for other ALU operations ...

return ila; }

The ALU takes four inputs (op, src1, src2, and dest), which are previously de-

coded from some instruction. The architectural state is made of four registers stored

in regs. SetDecode is an ILA method that specifies the conditional logic to determine

whether an instruction is enabled to execute. The decode logic for an ADD operation in

the ALU specification states that the op input must be equal to 01. Similarly, SetUpdate

describes the actual state update logic for the instruction. SetUpdate operates on one

state element at a time; its first argument is the given state element, and the second

argument is an expression describing how to update the state. For the ADD opera-

tion, the update procedure updates register file regs using the built-in ILA function

ilang::Storewhich stores a new value in memory state.

Suppose the hardware designer wants to implement the ALU machine as a three-

stage pipeline; then Figure 2.2 illustrates the design diagram, clearly labeling which

part of the design corresponds to the control logic (with the bulk of the design being

the datapath). The hardware designer has inserted two pipeline registers in the dat-

apath, one after reading the src1 and src2 registers from the register file and one for

storing the result of the ALU operation. The dashed boxes and arrows indicate where

the designer would place the control logic to guide the data through the datapath and

to select certain paths and functionality depending on the op input. Given the datap-

11

Control Logic Synthesis Chapter 2

ALU

src1
Addr Read Write
Data Addr

src2 RegisterAddr
File

Data
Data

dest

Pipe

PipeReg

Reg

op
Control Logic

Figure 2.2: The datapath diagram for a three-stage implementation of the ALU ma-

chine. The decoded instruction is input to the control unit, which determines how to

set control signals in the datapath.

ath portion of this diagram and a specification for the desired behavior, our technique

would automatically infer the correct control logic to fulfill the intended system behav-

ior.

2.2.3 Finite State Machine Example

Another common class of control logic we consider are FSMs. Consider a simple

accumulator machine with the following specification, expressed in ILA:

ilang::Ila CreateAccIla() {

auto ila = ilang::Ila("acc_ila");

// args are name and bitwidth

auto reset = ila.NewBvInput("reset", 1);

12

Control Logic Synthesis Chapter 2

auto go = ila.NewBvInput("go", 1);

auto stop = ila.NewBvInput("stop", 1);

auto val = ila.NewBvInput("val", 2);

auto acc = ila.NewBvState("acc", 8);

auto state = ila.NewBvState("state", 2);

auto reset_instr = ila.NewInstr("reset_instr");

reset_instr.SetDecode(state == STOP && reset == 1);

reset_instr.SetUpdate(acc, 0);

reset_instr.SetUpdate(state, RESET)

auto go_instr = ila.NewInstr("go_instr");

go_instr.SetDecode((state == RESET && go == 1) || (state == GO && stop == 0));

go_instr.SetUpdate(acc, acc + val);

reset_instr.SetUpdate(state, GO)

auto stop_instr = ila.NewInstr("stop_instr");

stop_instr.SetDecode(state == GO && stop == 1);

stop_instr.SetUpdate(acc, acc);

return ila; }

The specification describes a design with state acc, and three instructions that up-

date the state based on the input signals (reset, go, and stop).

Suppose the hardware designer intends to implement an FSM (illustrated in Fig-

ure 2.3) that matches the accumulator specification. The FSM has three states for the

accumulator updates associated with the reset, go, and stop inputs; it defines transi-

tions between the three states with predicates derived from those input signals.

In this case, the datapath is simply the set of FSM states and the control logic is the

transitions between them. Given the accumulator updates required for each state as

13

Control Logic Synthesis Chapter 2

go/acc':= acc + val

¬stop/
acc':= acc + val

RESET GO

STOP
reset/acc':= 0 stop/acc':= acc

Figure 2.3: An FSM for the accumulator machine. Each state corresponds to how the

machine updates the accumulator register. The input signals, reset, go, and stop pred-

icate the state transitions. Control logic synthesis generates the parts of the design in-

dicated in the dotted lines, including the transition logic.

well as the specification, our technique would automatically infer the necessary state

encodings, transition conditions, and FSM transitions to fulfill the intended system

behavior.

One implementation of the datapath, expressed in pseudocode, looks as follows:

state := ??

with state:

?? → acc := 0

?? → acc := acc + val

?? → acc := acc

out := acc

The ?? in the code represents control points in the datapath. The with statement

is syntactic sugar for conditional assignment predicated on the state argument; it de-

scribes the conditional updates in the datapath to the accumulator (here the designer

implements acc as a register).

The key point is that our control logic synthesis technique only requires a datapath

sketch (the solid-line components of Figures 2.2 and 2.3) and a specification. Control

14

Control Logic Synthesis Chapter 2

ILA

PyRTL

Control Logic Synthesis

Conditions
Program FinalSynthesis Design

Oyster Symbolic Evaluator

Specification
Pre/Post-

Abstraction Function

Datapath Sketch

Human in-the-loop

Figure 2.4: A diagram of the overall control logic synthesis workflow.

logic synthesis fills in the rest of the design—i.e., all of the dotted-lines in Figures 2.2

and 2.3 and their associated logic.

2.3 Control Logic Synthesis Technique

In this section we describe the high-level process to automatically generate correct-

by-construction control logic. We show through our case studies in Section 2.4 how to

specialize it to common architectures and hardware designs.

Figure 2.4 presents the overall work-flow of our toolchain. The inputs are (1) an

architectural specification using ILA [19]; (2) an HDL sketch of the datapath2; and (3)

a lightweight abstraction function mapping state in the datapath sketch to the archi-

tectural specification level. Our tool automatically extracts correctness conditions from

the ILA specification plus the abstraction function; translates the datapath sketch into

an intermediate representation called Oyster; and finally, via Rosette [26, 27], com-

piles the Oyster program and correctness conditions together into a symbolic form

to generate the control logic. A human can then iterate on the design by modifying

the specification and/or the datapath sketch (and updating the abstraction function

accordingly) to get new designs.
2Specified using the PyRTL HDL [25], though other languages such as SystemVerilog could be

supported.

15

Control Logic Synthesis Chapter 2

The control logic synthesis process comprises three main components, detailed in

the following subsections:

1. An intermediate representation (IR) tailored for program synthesis (Section 2.3.1)

that captures essential datapath constructs as well as holes for control logic.

2. An abstraction function between the microarchitecture of the datapath sketch

and architectural specification (Section 2.3.2), serving as a lightweight microar-

chitectural model which connects architectural state in the datapath to state in

the specification.

3. And finally, a program synthesis technique that fills the holes in the datapath

sketch using the pre- and postconditions from the formal architectural specifica-

tion as constraints, generating correct-by-construction control logic (Section 2.3.3).

2.3.1 Oyster Intermediate Representation

Our representation must be amenable to automated reasoning and also easily con-

structed from conventional HDLs. We present an IR named Oyster that is high-level

enough to easily translate to/from HDLs such as PyRTL and Verilog yet is also de-

signed to accommodate program synthesis. Oyster embodies a subset of features from

conventional HDLs in order to reduce the complexity of automated reasoning while

still being complete enough to express non-trivial designs (as shown in our case stud-

ies). Oyster programs can be translated to SMT constraints expressed in the theories of

bitvectors and uninterpreted functions which allows us to leverage standard program

synthesis techniques and tools.

Figure 2.5 describes the grammar for Oyster. An Oyster program has two compo-

nents: (1) a set of declarations for inputs, outputs, and stateful elements, and (2) a

16

Control Logic Synthesis Chapter 2

Design ::= decl(decl+) stmt+

decl ∈ Declaration ::= input name width | output name width

| register name width

| memory name width width

| hole name width

stmt ∈ Statement ::= var := expr | writemem addr data enable

expr ∈ Expression ::= var | const | ¬ expr | expr binop expr

| if expr then expr else expr

| extract expr high low | readmem addr

const ∈ Constant ::= width ’ value

binop ∈ BinaryOps ::= ∧ | ∨ | ⊕ | + | =

mem, name, var ∈ Identifier

high, low, value, width ∈ Integer

addr, data, cond, enable ∈ Expression

Figure 2.5: The grammar for Oyster. An “extract” expression extracts the bits from the

bitvector value in expr between the bit-index positions low and high.

17

Control Logic Synthesis Chapter 2

series of statements that describe the design, how data flows to its output ports, and

how to update stateful elements. Oyster represents all variables as bitvectors, with

the exception of memories. We model memories as a pair containing an uninterpreted

function for reads and an association list to track writes. For space reasons we do not

include here all of the operators supported by Oyster expressions, which includemany

common bitvector operations.

The hole construct in Figure 2.5 allows the hardware designer to specify where the

control logic should be filled in for the datapath sketch. Our case studies (Section 2.4)

detail how to use holes in datapath sketches for control logic generation in different

design scenarios.

AnOyster interpreter is essentially a cycle-accurate simulator for synchronous hard-

ware designs. Thus, we assume that all Oyster designs are synchronous with a single

implicit clock—all writes to registers and memory take effect in the next cycle. We im-

plement the Oyster interpreter in Rosette, a Racket-based framework for solver-aided

programming. A key feature of Rosette is that by writing a concrete interpreter for

a language, Rosette automatically lifts that interpreter to work with symbolic values,

thus generating a symbolic interpreter “for free”. This symbolic interpreter then lever-

ages SMT solvers to solve satisfiability questions such as those that we will use to au-

tomatically generate control logic.

2.3.2 Abstraction Function

We use the abstraction function to map datapath components in Oyster code to

architecture-level state in the specification. Because of the semantic gap between the

architectural specification and the datapath implementation, it is not obvious to for-

mal reasoning tools (such as a program synthesizer) what the connection is between,

18

Control Logic Synthesis Chapter 2

for example, architectural registers in the specification and a register file in the imple-

mentation. An abstraction function maps effectful behavior at the specification level

(for example, reading and writing to state) into the semantics of the datapath compo-

nents for a particular microarchitecture. This section describes abstraction functions

at a high level, and our case studies in Section 2.4 give more detailed examples.

For an abstraction function, the developer needs to specify for each architectural

state element in the specification:

1. The corresponding name of the datapath component;

2. The type of the datapath component: one of either input, output, register, or

memory;

3. A list of state effects indicating reads or writes from/to the datapath component,

annotated with timing (that is, for each read/write, when the effect occurs in the

datapath).

We specify abstraction functions (denoted α) for control logic synthesis with the

following grammar:

α ::= (SpecID: {name: DatapathID, type: type, [effect+]})+

with cycles: TimeStep, assume∗

type ::= input | output | register | memory

effect ::= read: TimeStep | write: TimeStep

assume ::= [DatapathID: TimeStep]+

For the three-stage ALU example in Section 2.2.2, the developer would provide the

following abstraction function:

19

Control Logic Synthesis Chapter 2

op: {name: 'op', type: input, [read: 1]}

src1: {name: 'src1', type: input, [read: 1]}

src2: {name: 'src2', type: input, [read: 1]}

dest: {name: 'dest', type: input, [read: 1]}

regs: {name: 'regfile', type: memory, [read: 1, write: 3]}

with cycles: 3

TimeStep i > 0 is the state of the datapath after updating all registers andmemories

with the results of the (i − 1)th step of evaluation (because Oyster evaluates designs

synchronously). op, src1, src2, and dest are all inputs in the datapath and read at

time 1. regfile is a memory that maps to the set of architectural registers (regs); the

datapath reads it at time 1 and writes to it at time 3. The developer also specifies how

many cycles to symbolically evaluate the sketch; in this case it is equal to the depth of

the pipeline.

The with clause optionally accepts a list of signals in the datapath sketch which

the symbolic evaluator assumes to be true. Datapath developers provide assumptions

in situations where datapath hazards interfere with architectural instruction behavior.

For example, a control hazard may flush the pipeline, “killing” the currently executing

instruction. In this scenario, the program synthesizer cannot find a satisfying solution

for the control logic because it can always find a case where the executing instruction

is invalid. Our constant-time cryptography core requires this kind of assumption in its

abstraction function (Section 2.4.2).

It is possible there is no one-to-one mapping between datapath components and

architectural state. For instance, an ISA specification may not distinguish between in-

struction memory and data memory, modeling both together, whereas a datapath tar-

geting that ISA may choose to implement the instruction and data memories as sepa-

ratememory blocks. In that case, the developer addsmultiple entries to the abstraction

20

Control Logic Synthesis Chapter 2

function, e.g., for the architectural memory example:

mem: {name: 'i_mem', type: memory, [read: 1]}

mem: {name: 'd_mem', type: memory, [read: 2, write: 3]}

In amulti-cycle design, the implementationmay affect architectural state over time.

Capturing these timing effects is crucial for designs with pipelining. The pipelined

ALU scenario exemplifies the gap between the architectural specification and the dat-

apath implementation. Abstraction functions bridge this gap to give our program syn-

thesis technique enough semantic information about the relation between state in the

architecture and datapath sketch to find satisfying solutions for the control logic.

2.3.3 Program Synthesis for Control Logic

In Figure 2.4, the process inside the dotted box illustrates the overall flow for the

program synthesis step. Given a datapath sketch in an HDL, our technique first com-

piles the sketch into Oyster and then uses Rosette to translate the Oyster program into

an SMT formula via symbolic evaluation using the theories of bitvectors and uninter-

preted functions. For multi-cycle designs, the symbolic evaluator runs for the number

of steps specified by the user. Then, for an architectural specification, our tool auto-

matically extracts the pre- and postconditions and provides them as constraints to the

program synthesizer. We formulate the program synthesis problem as follows:

∃e0, . . . , en, ∀s0. (2.1)

Interpretk(s0, Sketch[h0 := e0, . . . , hn := en]) = (si)
k
i=1,∧

j

Prej[sspec := α(s0)] −→ Postj[sspec := α(s1, . . . , sk)].

21

Control Logic Synthesis Chapter 2

For all holes h0, . . . , hn in the datapath sketch, the program synthesizer searches

for Oyster expressions e0, . . . , en, filling the holes in Sketch with an implementation for

the missing control logic. Equation (2.1) quantifies over the initial state s0 because the

synthesized expressions, e0, . . . , en, must hold for any initial state for every instruction

in the specification.

Interpretk evaluates theOyster sketch given an initial state s0 and returns a sequence

of environments, s1, . . . , sk, capturing the state of the design after each step. Then, for

each instruction j, the formula asserts that the precondition implies the postcondition.

The precondition Prej takes the initial state s0 after passing through abstraction func-

tion α, and the postcondition Postj takes the computed states s1, . . . , sk transformed

according to α.

The abstraction function α acts as a substitution procedure for the pre- and post-

conditions between state in the specification and state in the datapath. To understand

how α fits into Equation (2.1), we separate the substitution procedure into two parts,

for the precondition and postcondition, respectively.

Prej[sspec := α(s0)], where sspec is a state element from the ISA specification; read as,

“for the precondition for instruction j, substitute each occurrence of sspec with α(s0).”

Postj[sspec := α(s1, . . . , sk)], with α(s1, . . . , sk) = st, where t is a TimeStep and

0 < t ≤ k. The substitution procedure checks whether the state element is part of a

read or write using t as specified in α. Further, for each assume in α, the procedure

adds a conjunction that the given datapath signal in st is true, where t is the associated

TimeStep.

In practice, for large j (the number of instructions in the specification), solving

times dramatically increase, as our evaluation shows in Section 2.5. To overcome this

scalability issue, we introduce an optimization for control logic synthesis that can be

applied under an assumption about the design.
22

Control Logic Synthesis Chapter 2

Optimization for Control Logic Synthesis

To overcome the scalability limitation of the described program synthesis tech-

nique, we scale control logic synthesis by generating the control logic independently

per instruction and then join the results together into a final overall formaccording to the

preconditions in the specification. We introduce a property we call instruction inde-

pendence, whichmust hold on the datapath sketch in order to apply this optimization.

(In Section 2.3.3, we present an argument for the correctness of this optimization for

the class of machines we target.)

Instruction Independence for Control Logic consists of two conditions that must

hold on the given datapath sketch in order to solve for control logic independently:

1. Mutually exclusive preconditions: The preconditions, or antecedents, for the

control logic for each instruction are disjoint.

2. No feedback in control logic: Signals output from the control logic cannot feed

back into the control logic except for valid wires identified in α.

For the first condition, the decoder and FSM-style control we consider in our case

studies necessarily satisfy this condition, as instructions are uniquely decoded. In this

way, if the control logic for two instructions share the same preconditions then the

control logic is identical.

For the second condition, we require no feedback so that it is possible for the con-

trol logic to be solved independently. The exception for valid signals identified by the

abstraction function allows the optimization to handle designs that have determined

dependencies between instructions. For example, the constant-time cryptography core

(Section 2.4.2) exhibits control hazards when branches resolve and force a flush of the

currently fetched instruction. The valid signal that determines the control hazard de-

23

Control Logic Synthesis Chapter 2

rives from the control signal controlling a branch. If there is a flush, the signal is false

indicating a valid instruction is not executing, thus there is no control logic to dispatch.

The intuition for why this speeds up control logic synthesis is that specifications

with large number of instructions produce correspondingly large conjunctions of con-

straints — following Equation (2.1) — that SMT solvers struggle to solve. By making

the independence assumption about instruction behavior, we break up the conjunc-

tion. Then, our control logic synthesis tool sends the individual synthesis queries to

the SMT solver which are considerably smaller.

Given an instruction in the specification, the tool extracts the instruction’s precon-

ditions (for instance, the instruction opcode as calculated by the fetch/decode logic

and possibly other specified conditions, such as checking that the destination regis-

ter is not the zero register, e.g., in RISC-V). Next, the tool extracts the specified state

change as a postcondition. The result is a formula that expresses the logical statement,

“assuming a specific opcode (and any other relevant preconditions), what values for

the existentially quantified variables result in the asserted state change being true?”

A satisfying solution from the SMT solver is a concrete bitvector assigning a value to

each control signal.

Control logic synthesis repeats this process for each instruction in the specification,

resulting in a mapping of control signals to concrete bitvector values. The last step is

to translate this mapping into complete Oyster expressions that incorporate the con-

straints from all instruction semantics, producing satisfying control logic to generate

each control signal based on the opcodes and other relevant state.

We call this procedure the control union, which we abbreviate as ⊔ and define in the

algorithm in Figure 2.6. The procedure takes as input a list of holes in the datapath

sketch and synthesis results from per-instruction control logic synthesis. The results

variable maps for each hole the concrete bitvector value solved during control logic
24

Control Logic Synthesis Chapter 2

function ⊔(holes, results):

control := []

for hole in holes:

hole-defn := LogicGen(results[hole])

control := control + Assign(hole, hole-defn)

return control

function LogicGen(val→ops):

val, opcodes := head(val→ops)

cond :=
∨

opcodes

return IfThenElse(cond, LogicGen(tail(val→ops)), val)

Figure 2.6: An algorithm for combining individual control logic synthesis results to-

gether into a complete implementation under the instruction independence assump-

tion.

synthesis to an instruction (or list of instructions, if multiple instructions map to the

same control signal value).

For example, consider the following map of synthesis results from a small RISC-

style design with three instructions: ADD, LOAD, and JUMP; and three holes for control

signals: write-register, read-memory, and jump.

results = {

"write-register": {0b1: [ADD, LOAD], 0b0: [JUMP]},

"read-memory": {0b1: [LOAD], 0b0: [ADD, JUMP]},

"jump": {0b1: [JUMP], 0b0: [ADD, LOAD]}}

After running the ⊔ procedure as described in Figure 2.6 over the resultsmap, we

obtain the following Oyster code implementing the control logic:

25

Control Logic Synthesis Chapter 2

pre-add := op = ADD

pre-load := op = LOAD

pre-jump := op = JUMP

write-register := if (pre-add ∨ pre-load) then 1

else if pre-jump then 0

read-memory := if pre-load then 1

else if (pre-add ∨ pre-jump) then 0

jump := if pre-jump then 1

else if (pre-add ∨ pre-load) then 0

For readability and reuse, the variables pre-add, pre-load, and pre-jump define the

preconditions for each instruction in Oyster code based on the specification (derived

automatically). While this example is smaller than the control logic in our case studies,

the ⊔ procedure is flexible enough to handle signals of larger bitwidths and generate

nested multiplexers (through nested if-then-else expressions).

Correctness Argument of Union Operation

Here we argue that joining individual generated control logic per-instruction un-

der the ⊔ procedure produces a correct implementation of control logic with respect

to the architectural specification. We present our argument starting from the “ideal”

problem formulation presented in Equation (2.1). By solving the control logic for each

instruction individually, we rearrange the formula to:

∃cj0, . . . , cjn,∀s0 . (2.2)

Interpretk(s0, Sketch[h0 := cj0, . . . , hn := cjn]) = (si)
k
i=1,

Prej[sspec := α(s0)] −→ Postj[sspec := α(s1, . . . , sk)],

where cj0, . . . , cjn are Oyster constants.
26

Control Logic Synthesis Chapter 2

The new formula says that for each instruction j in the specification, there exists

Oyster constants cj0, . . . , cjn that satisfy the holes in the datapath sketch for that instruc-

tion. Applying the instruction independence assumption rearranges Equation (2.1)

according to the two conditions (from Section 2.3.3). Because we assume mutually

exclusive preconditions, we break the big conjunction of Prej and Postj into a single

implication for each instruction j. Assuming no feedback in the control logic, we sepa-

rate the generated control into disjoint, per-instruction pieces such that
⊔

j c
j
0, . . . , c

j
n ≡

e0, . . . , en. That is, the individual synthesis results after the control union is a correct

implementation of the control logic and semantically equivalent to the Oyster expres-

sions, e0, . . . , en, generated from Equation (2.1). As the full formula is a conjunction

of all predicates Prej and Postj for each instruction j, we break each expression ei filled

for hole hi into per-instruction pieces such that
⊔
cji ≡ ei.

Note that this correctness argument does not necessarily hold for designs that do

not make this assumption or are outside of the class of machines we consider in this

work. In Section 2.5.3, we discuss the limitations of the instruction-independence as-

sumption and highlight future work to support more kinds of microarchitectures.

2.4 Case Studies

Here we cover three case studies: (1) an embedded-class RISC-V core, (2) a be-

spoke RISC-V core with a custom instruction set for constant-time cryptography, and

(3) a cryptographic accelerator targeting AES. For each, we show how we specialize

the core flow of our technique from Section 2.3.

Through these case studies, we emulate an “agile” design flow. The case studies

start with a base datapath sketch and off-the-shelf ILA specification, where we demon-

strate the control logic synthesis technique. Then, we modify either the specification

27

Control Logic Synthesis Chapter 2

or the datapath, or both, and show how control logic synthesis can again be invoked

to automatically re-generate the control logic given the design changes.

2.4.1 Embedded-Class RISC-V Core

In this case study, we demonstrate how our control logic synthesis technique auto-

matically generates the implementation of the instruction decoder-style control logic

for different iterations of an embedded-class RISC-V core. We use an existing ILA

specification for the RISC-V ISA [28]. The case study iterates on the design over two

dimensions—modifying the architectural specification by adding ISA extensions, and

modifying the datapath sketch by adding a pipeline.

We begin with the RISC-V 32-bit integer base instruction set (RV32I). This set totals

37 instructions, excluding the ecall and ebreak instructions because the target cores

do not implement exceptions or interrupts. Then we add to the base ISA two exten-

sions geared towards cryptography: Zbkb and Zbkc. The Zbkb extension is a set of 12

bit-manipulation instructions which are common in cryptographic applications: ro-

tate (rol, ror, rori), logical-with-negate (andn, orn, xnor), byte reversal (rev8, rev.b),

shuffle (zip, unzip), and word packing (pack, packh). Zbkc is an extension that adds

two carryless multiply instructions: clmul and clmulh.

Single-Cycle Datapath

We start with a single-cycle datapath sketch, implementing the main components

of the processor for executing each instruction class. To write the sketch, the devel-

oper identifies control points in the datapath and leaves these as holes, following the

instruction-decoder pattern for control logic (described in Section 2.2.2). The follow-

ing shows a portion of the datapath sketch in PyRTL, underlining the control signal

28

Control Logic Synthesis Chapter 2

variables for emphasis:

instruction = fetch(i_mem, pc)

opcode, funct3, funct7, imm = decode(instruction)

alu_imm <<= ??(opcode, funct3, funct7)

alu_op <<= ??(opcode, funct3, funct7)

reg_write <<= ??(opcode, funct3, funct7)

read_mem <<= ??(opcode, funct3, funct7)

...

jump <<= ??(opcode, funct3, funct7)

alu_in2 <<= mux(alu_imm, rs2_val, imm)

alu_out <<= alu(alu_op, rs1_val, alu_in2)

Register file update

with conditional_assignment:

with reg_write:

with read_mem:

rf[rd] |= d_mem[alu_out]

with jump:

rf[rd] |= pc + 4

with otherwise:

rf[rd] |= alu_out

PC update

pc.next <<= mux(jump, pc + 4, target)

For each signal, the developer leaves its implementation as a hole (??) and passes

as input the parts of the decoded instruction (opcode, funct3, and funct7).

Abstraction Function The microarchitecture of the single-cycle core closely matches

29

Control Logic Synthesis Chapter 2

the architectural specification. There is no special timing and state effect information

to consider; all reads and writes happen at time step 1:

pc: {name: 'pc', type: register, [read: 1, write: 1]}

GPR: {name: 'rf', type: memory, [read: 1, write: 1]}

mem: {name: 'd_mem', type: memory, [read: 1, write: 1]}

mem: {name: 'i_mem', type: memory, [read: 1]}

with cycles: 1

In the ILA specification for RISC-V, GPR stands for “general-purpose registers” and

is modeled as a vector of registers. In the datapath sketch, GPR maps to a memory

rf which is the register file. The datapath sketch also separates instruction and data

memory as i_mem and d_mem, respectively.

Program Synthesis As our results show in Section 2.5, the program synthesis tool is

unable to generate control logic for the entire core ISA specification at once. To over-

come this limitation, we take advantage of the RISC-V ISA instruction independence

(i.e., the control logic for each instruction does not depend on any other instructions)

and apply the optimization described in Section 2.3.3, generating control logic for each

instruction independently and combining them together according to the algorithm

in Figure 2.6.

Figure 2.7 shows an example of the generated control logic in PyRTL for a loadword

instruction (LW) from the RISC-V core. The with statements in PyRTL specify condi-

tional assignments for wire variables in the design (with the conditional assignment

operator denoted by |=). The code in Figure 2.7 executes control logic for a LW instruc-

tion because the conditional with expressionsmatch on the corresponding opcode and

3-bit function code from the decoded instruction. For a load instruction, control logic

synthesis determines that the following must occur in the datapath to satisfy the ISA

30

Control Logic Synthesis Chapter 2

instruction semantics for LW:

• Signal a memory read (mem_read |= 1) with the mask for a word-sized load

(mask_mode |= 2).

• Perform an ALU operation with the operation signaled by alu_op |= ADD, and

direct the immediate value from the decoded instruction into one of the ALU’s

inputs (alu_imm |= 1). These control signals coordinate the calculation of the

address to be read from memory.

• Signal a write to the register file (reg_write |= 1).

• Set other control signals to false so that other state elements are not modified in a

way that is inconsistent with the ISA instruction semantics (e.g., mem_write, and

jump are all set to 0).

Two-Stage Pipeline Datapath

Next, we extend the design to an embedded-class core similar to Ibex [29]. We keep

the ISA specification (including extensions) exactly the same as the single-cycle core,

and only change the datapath sketch, adding two pipeline stages. The first pipeline

stage is instruction fetch, decode and execute. The second pipeline stage is memory

and write back.

Abstraction Function Because we introduce pipelining into the datapath, we need

to strengthen the abstraction function by adding timing information related to the mi-

croarchitecture. Specifically, we indicate for each corresponding architectural state el-

ement in the datapath which cycle (i.e., pipeline stage) that state is read or modified.

31

Control Logic Synthesis Chapter 2

with op == LOAD:

with funct3 == 0x2:

mem_read |= 1

mask_mode |= 2

alu_op |= ADD

alu_imm |= 1

reg_write |= 1

mem_write |= 0

mem_sign_ext |= 0

jump |= 0

Other control signals continue...

Figure 2.7: PyRTL code of the generated control logic for a load word instruction (LW)

in the RV32I core. LOAD and ADD are mnemonics for numeric values and used here for

readability. The with construct in PyRTL is syntactic sugar for nested multiplexers

which we present here for readability.

Due to pipelining, without this timing information the generated pre- and postcondi-

tions will not have semantically valid values and the program synthesizer will fail to

find a satisfying implementation for the control logic.

pc: {name: 'pc', type: register, [read: 1, write: 2]}

GPR: {name: 'rf', type: memory, [read: 1, write: 2]}

mem: {name: 'd_mem', type: memory, [read: 2, write: 2]}

mem: {name: 'i_mem', type: memory, [read: 1]}

with cycles: 2

Themain changes to the abstraction function from the single-cycle core are the read

and write time steps (underlined). In the two-stage pipeline, reads and writes to the

register file occur in parallel (stage 1 and stage 2). All datamemory operations occur in

32

Control Logic Synthesis Chapter 2

stage 2. By indicating a read at time step 1 (i.e., stage 1 of the pipeline), any writes that

occurred in parallel in stage two will be available from the perspective of the symbolic

evaluator.

Program Synthesis With the new abstraction function, program synthesis follows

the same as the single-cycle core, except the symbolic evaluator runs the sketch for 2

cycles.

2.4.2 Constant-Time Cryptography Core

As an additional case study, we modify the RISC-V design described above to cre-

ate a bespoke core for constant-time cryptography. The motivation is that conditional

branch instructions introduce variable instruction latency, which reveal timing side

channels. We modify the RISC-V ISA specification to remove conditional branch in-

structions and all other instructions not necessary to execute SHA-256. We then ex-

tend it with a custom instruction for conditional move (CMOV). In cryptographic de-

ployments, this bespoke instruction set ensures that the number of cycles executed on

the core remains independent of the input length, making it resilient to timing side

channel attacks.

Starting from the two-stage RISC-V core, we modify the datapath to add a third

pipeline stage, remove all conditional branching logic, and extend the decode unit and

ALU to support the new CMOV instruction. The three stages are: (1) instruction fetch,

(2) instruction decode and execute, and (3) memory and write back.

Abstraction Function The abstraction function for the three-stage pipeline is a mod-

ification of the two-stage abstraction function, following the read and write timing of

the new datapath.

33

Control Logic Synthesis Chapter 2

pc: {name: 'pc', type: register, [read: 1, write: 2]}

GPR: {name: 'rf', type: memory, [read: 2, write: 3]}

mem: {name: 'd_mem', type: memory, [read: 3, write: 3]}

mem: {name: 'i_mem', type: memory, [read: 1]}

with cycles: 3, [instruction_valid: 1]

The main change is the instruction_valid signal assumption in the datapath. The

assumption states that this wire should be true at time step 1. This assumption resolves

the case when there is a control hazard in the pipeline. An unconditional branch in-

struction such as JALwill resolve in stage 2, and force a flush of the fetched instruction

in stage 1. Assuming instruction_valid is true will prevent the solver from trying to

synthesize control for an instruction that is going to be flushed.

Program Synthesis The program synthesis step requires no change from the previ-

ous case studies; symbolic evaluation runs for 3 cycles.

2.4.3 AES Hardware Accelerator

In this case study, we demonstrate how our control logic synthesis technique au-

tomatically generates the implementation of the FSM-style control logic for an AES-

128 hardware accelerator. We take an existing ILA specification for AES-128 encryp-

tion [28], and compile it to constraints for our control logic synthesis tool as described

in Section 2.5.1. While the AES specification does not have typical “instructions” as a

general-purpose ISA does, it splits themain computation units for AES encryption into

three distinct states: “first”, “intermediate”, and “final”. The ILA models each state as

a separate ILA instruction, which the device can exist in for one or more “rounds.”

As an example, the following code is part of the ILA specification for the intermediate

round AES computation (functions CipherUpdate_MidRound and KeyUpdate_MidRound

34

Control Logic Synthesis Chapter 2

compute the update for their respective state elements):

auto instr = model.NewInstr("IntermediateRound");

instr.SetDecode((round > 0) & (round < 9));

instr.SetUpdate(round, round + 1);

instr.SetUpdate(ciphertext,

CipherUpdate_MidRound(ciphertext, round, round_key));

instr.SetUpdate(round_key,

KeyUpdate_MidRound(round_key, round));

The two key components are SetDecode and SetUpdate. The SetDecode function

specifies the preconditions for the device existing in that state. The SetUpdate func-

tion specifies the postconditions, that is, the associated updates for state elements

ciphertext, round_key, and round.

For the datapath sketch we implement a multi-cycle datapath for the AES acceler-

ator following an FSM-style control structure. The datapath computes one round of

encryption at a time, keeping track of the rounds between cycles. We leave holes for

computing the state transition logic as well as holes for the states themselves (in the

with expressions).

state <<= ??

with conditional_assignment:

with state == ??:

Computation for first round ...

with state == ??:

Computation for intermediate rounds ...

with state == ??:

Computation for final round ...

The datapath describes how the hardware computes with and modifies the archi-

35

Control Logic Synthesis Chapter 2

tecture level state such as round_key and ciphertext, but it does not describe what the

states are or how the states transition between each other.

Abstraction Function The abstraction function bridges the gap between theAES spec-

ification and the datapath sketch by explicitly mapping the inputs and registers in the

datapath sketch to the architectural elements in the specification. This design is not

pipelined so we do not capture any timing-related information in the datapath.

key_in: {name: 'key_in', type: input, [read: 1]}

plaintext: {name: 'plaintext', type: input, [read: 1]}

round: {name: 'round', type: regster,

[read: 1,write: 1]}

round_key: {name: 'round_key', type: regster,

[read: 1, write: 1]}

ciphertext: {name: 'ciphertext', type: regster,

[read: 1, write: 1]}

with cycles: 1

Program Synthesis The result of control logic synthesis for AES fills in state condi-

tion and state transition logic for the FSM, and generates the state encodings.

state <<= mux(round == 0,

mux((round > 1) & (round <= 9), 0b10, 0b01), 0b00)

with conditional_assignment:

with state == 0b00:

Computation for first round ...

with state == 0b01:

Computation for intermediate rounds ...

with state == 0b10:

Computation for final round ...

36

Control Logic Synthesis Chapter 2

We note that we did not make any changes to the core control logic synthesis tech-

nique to support the AES hardware accelerator. The developer follows the same proce-

dure, providing a datapath sketch and ILA specification. This case study demonstrates

the generality of our technique and shows promise for applying control logic synthesis

to the development of hardware accelerators in other domains such as image process-

ing, AI, and machine learning, as well as other aspects of SoC design such as protocol

implementations (for example, cache coherence protocols) [30].

2.5 Evaluation

In this section, we present the results of control logic synthesis over all designs

from our case studies. We ran all experiments on a workstation running Ubuntu 20.04

GNU/Linux (kernel version 5.15) with an Intel Xeon Gold 6226R 3.9 GHz processor

and 96 GB RAM.

2.5.1 Implementation

Our implementation spans several languages for each major component in the tool

flow. Overall, the Racket code implementing the Oyster interpreter and program syn-

thesis procedures are just over 1,000 source lines of code (SLOC). Translating PyRTL

to Oyster is about 150 SLOC of Python. Our implementation also includes adding sup-

port for holes in the PyRTL language. With the exception of the bespoke cryptography

core, we use unmodified, off-the-shelf ILA specifications for all of the case studies.

The ILA to Rosette compiler is 550 SLOC of C++. Figure 2.8 presents a gram-

mar that defines the compilation process. Bold names in the grammar correspond to

ILA intrinsic functions that model common bit manipulation and comparison opera-

tions whereas bold names in the translation function correspond to Rosette functions.
37

Control Logic Synthesis Chapter 2

DecodeExpr ::= SetDecode(expr)

UpdateExpr ::= SetUpdate(state_var, expr)

expr ::= sym | expr binop expr | !expr

| Extract(expr, int, int)

| Load(expr, expr) | Load(expr)

| Concat(expr, expr)

| Ite(bool_expr, expr, expr)

| ZExt(expr, int)

binop ::= + | == | & | . . .

sym ::= int | state_var | input_var

T [[DecodeExpr]] ::= (assume T [[expr]])

T [[UpdateExpr]] ::= (assert (bveq T [[expr]] (post (α state_var))))

T [[expr binop expr]] ::= (T [[binop]] T [[expr]] T [[expr]])

T [[!expr]] ::= (bvnot T [[expr]])

T [[Extract(expr, int, int)]] ::= (extract T [[expr]] int int)

T [[Load(expr, expr)]] ::= (read-mem (pre (α T [[expr]])) (bv T [[expr]] addr_width))

T [[Load(expr)]] ::= (pre (α T [[expr]]))

T [[Concat(expr, expr)]] ::= (concat T [[expr]] T [[expr]])

T [[Ite(expr, expr, expr)]] ::= (if T [[expr]] T [[expr]] T [[expr]])

T [[ZExt(expr, int)]] ::= (zero-extend T [[expr]] (bitvector int))

T [[+]] ::= bvadd T [[==]] ::= bveq

T [[&]] ::= bvand . . .

Figure 2.8: The grammar for ILA decode and update expressions with their Rosette

transformation rules. T [[]] defines the translation function. pre is the initial state en-

vironment. post is the sequence of environments produced after symbolic evaluation

(dependent on the number of steps). α is the abstraction function.

38

Control Logic Synthesis Chapter 2

The DecodeExpr and UpdateExpr are the top-level rules that are translated into assume

and assert statements in Rosette, respectively. An ILA-modeled instruction is valid if

the expr argument is true. A modeled instruction may also update one or more state

variables with a call to SetUpdate and passing the variable as well as the new value.

Translation proceeds by syntactically rewriting the rest of the expression tree.

ILA specifications for FSM-based designs model one state for each instruction. The

conditions for decoding the state are the architectural preconditions for the device

existing in or entering into that state and the state update is the change expected to

be made after that state finishes execution. Because the modeling for FSM-based de-

signs is analogous to traditional CPU instructions, our compiler is able to generate

constraints without extra information about the type of control it is generating.

As discussed in Section 2.4.3, we demonstrate our technique on FSM-based con-

trol for an AES accelerator. A unique detail of AES, which separates its ILA from a

standard processor’s, is that it relies on various lookup tables for computation. These

are modeled in ILA as MemConst objects representing read-only memory. Instead of

modeling these with uninterpreted functions as with other state elements, the ILA-to-

Rosette compiler generates Racket-level immutable vectors.

2.5.2 Results

Table 2.1 presents our experimental results. In most cases, control logic synthesis

takes minutes. We include one experiment where we attempt control logic synthesis

over the entire RV32I RISC-V ISA at once, to show the effectiveness of the instruction-

independence optimization. We set a 3 hour timeout, which this experiment exceeded,

while the experiment on the same design with instruction-independence optimization

took only 6.6 seconds. We also compare times for theAES acceleratorwith andwithout

39

Control Logic Synthesis Chapter 2

Design Variant Sketch Size
Control Logic

Synthesis Time (s)

AES Accelerator - 250 253.8

AES Accelerator † - 250 315.9

Single-

Cycle Core

RV32I 358 6.6

RV32I + Zbkb 531 10.2

RV32I + Zbkc 668 12.8

RV32I † 358 Timeout

Two-Stage

Core

RV32I 393 96.3

RV32I + Zbkb 566 75.4

RV32I + Zbkc 703 131.7

Crypto Core CMOV ISA 426 6.7

Table 2.1: Control logic synthesis results over all case studies: the AES hardware ac-

celerator, two variants of an embedded-class RISC-V core, and the constant-time cryp-

tography core. The “Sketch Size” column gives the size of the datapath sketch in lines

of Oyster code. Control logic synthesis times are given in seconds. †: Indicates the

experiment synthesizes control logic without the instruction-independence optimiza-

tion. All other experiments use the per-instruction control logic synthesis strategywith

the union operator (as described in Section 2.3.3).

40

Control Logic Synthesis Chapter 2

our per-instruction optimization. While AES does not time out without the optimiza-

tion, the per-instruction version finishes faster.

Table 2.2 compares the size of the processor configurations with generated con-

trol logic to a hand-written reference. For space, we only show the comparison for

the single-cycle core, as the other designs follow the same pattern. The size of the

generated HDL code for the control logic primarily depends on the number of instruc-

tions in the ISA and the number of control signals. Overall, its size is larger than the

handwritten implementation. However, after hardware synthesis, the processors with

generated control logic use about 10% more gates than the reference. We also ran the

generated control logic through a logic optimizing pass in Yosys [31] which results in

about 3% more gates total.

For the constant-time cryptography core, we compile a SHA-256 program to our

bespoke ISA without conditional branches and using the new CMOV instruction. We

simulate this on the core with test cases varying input string length from 4 to 32. The

simulation results yield the same number of CPU cycles independent of input length,

showing our bespoke core is constant-time. Further, we compared these simulations

of the cryptography core with automatically generated control logic against a hand-

written reference. The results show both cores spend the same number of cycles to

produce the same result.

2.5.3 Limitations and Future Work

Given the time and effort required to implement and verify a processor in an itera-

tive agile design process, it is notable that we generate correct control logic in minutes.

Here we discuss some limitations and directions for future work.

One limitation comes from the size and complexity of constraints sent to the SMT

41

Control Logic Synthesis Chapter 2

Design Variant
HDL Control Logic

(Reference)

HDL Control Logic

(Generated)

Netlist Size

(Reference)

Netlist Size

(Generated)

Netlist Size

(Optimized)

Single-

Cycle Core

RV32I 177 627 41K 46K 42K

RV32I + Zbkb 214 797 60K 66K 62K

RV32I + Zbkc 192 643 68K 73K 70K

Table 2.2: Size of designs with generated control logic compared to a hand-written

reference implementation. HDL Control Logic records source lines of code in PyRTL

of the generated control logic versus the reference. Netlist Sizemeasures the number of

gates in the circuit synthesized from the completed designs using the PyRTL compiler.

Netlist Size (Optimized) records the number of gates in the design after running the

generated control logic through a logic optimizer (using Yosys [31]).

solver for program synthesis. For large designs evaluated over multiple time steps,

solving times increase dramatically. Exploding solving times is a known problem in

program synthesis and research has studied how to diagnose and fix performance is-

sues related to symbolic evaluation [32, 33], more recently targeted for hardware de-

signs [34]. Given the relatively little attention to HDLs in program synthesis there is

space for these tools to better accommodate HDLs.

There are many interesting microarchitectural features to explore with our control

logic synthesis technique; we group these features into two categories:

1. Based on the limitations brought by the instruction-independence assumption,

there are microarchitectural features our technique currently cannot handle, like out-

of-order execution. We leave this to future work on how to lift, generalize, and scale

our technique without the assumption.

2. There are designs with features that are worth exploring and which are not

blocked by the instruction-independence assumption. By adding more invariants via

42

Control Logic Synthesis Chapter 2

the abstraction function, our technique can encode more microarchitectural depen-

dencies such as branch predictors, stalls and exceptions, and resilience to other side-

channels.

At present, our tool only generates correct control logic. The HDL code generated

for our RISC-V processor—and the synthesized circuit—is larger than a handwritten

reference. There is room in our technique to generate HDL code that is correct and

also optimal with respect to some objective function (size of HDL code, area of circuit,

power, etc.).

Improving feedback for developer experience is further future work. For instance,

if the datapath sketch is incorrect with respect to the ILA, the tool will fail to find a

satisfying solution for the control logic. Future work can extend the tool to indicate

which part of the datapath is incorrect.

2.6 Related work

2.6.1 Symbolic Evaluation for Hardware Design

Existing work like SketchiLog [35, 36] generates Verilog code given a sketch and a

reference implementation, but is limited to combinational circuits. VeriSketch [37] is

another sketch-based Verilog code generation tool that leverages CEGIS and informa-

tion flow tracking to synthesize combinational and sequential circuits that adhere to

information flow security properties. Our work instead uses program synthesis goals

guided by specifications independent of the HDL code. Other work symbolically eval-

uates processors for verification or other analyses [38, 39] like tailoring a processor to

a specific application by reducing area and power through eliminating unused gates

via symbolic analysis [40].

43

Control Logic Synthesis Chapter 2

Knox is a framework that uses Rosette to symbolically evaluate circuits in order

to formally verify hardware security modules [41] building off of previous work that

translatesVerilog designs into a shallow embedding inRosette [42]. Similarly, Pensieve

uses Rosette for modeling microarchitectures to find speculative execution vulnerabil-

ities [43].

2.6.2 Hardware Languages and Design Tools

PDL (Pipeline Description Language) [44] is an HDL that raises the abstraction level

for implementing pipelined processors by letting developers write “one instruction

at a time” semantics for their design and outputs a Bluespec System Verilog (BSV)

pipeline [45]. PDL intersects with our work as it tackles the problem of designing and

reasoning about pipelined processors from a language perspective. While PDL relies

on the BSV compiler for generating control logic, our generated control logic is proven

correct with respect to a formal ISA specification.

Xtensa is an extensible processor design tool [46] which enables developers to

“drop-in” components into a processor pipeline and automates connecting the compo-

nents together. Part of Xtensa is the TIE language, which allows specifying semantics

of single-cycle and multi-cycle register-to-register instructions [47]. Our technique in-

stead allows for arbitrary HDL code from a developer, not only drop-in components.

Additionally, our tool formally verifies the generated control logic against an existing

ISA specification.

2.6.3 Formal Verification

Our work intersects with research using automated theorem provers in verification

of microarchitecture models for processors similar to those considered in this chapter

44

Control Logic Synthesis Chapter 2

(in-order execution with shallow pipelines) [9], models with deeper pipelines [10],

and more complex microarchitectures [11, 12, 13]. Much of this work relies on an ab-

straction function which “flushes” the implementation whereas in other work, compo-

sitional, or refinement-based, proof techniques obviate the need for flushing [48, 12, 14,

23]. Ourwork differs by starting at theHDL code level rather than amicroarchitecture-

level model, and builds on prior microarchitecture verification by automatically gen-

erating correct-by-construction control logic for an incomplete hardware implementa-

tion.

Broadly, work in formal hardware verification and model checking [15, 16, 17], in-

tersects with ours as well. Well-established tools such as ABC [49] use SAT solving for

logic simulation, synthesis, and verification tasks [50]. Advances in SMT solvers found

their way into model checkers for hardware such as EBMC [51, 52, 53]. Pono [54]—

successor of CoSA [55]—and AVR [56] are model checkers that work over transition

systems and often run multiple model checking algorithms in parallel. Further, past

work builds formal verification into existing HDL toolchains [57, 58].

The Check suite use an interactive theorem prover (Coq) to prove a microarchitec-

ture’s handwrittenMCM is correct with respect to a suite of litmus tests [59, 60, 61, 62]

or extract a model from RTL code for MCM verification [63].

2.7 Conclusion

Control logic synthesis enables a newdesign approachwhich embeds formalmeth-

ods in tandem with the development process. This technique provides a correct-by-

construction approach which requires only a lightweight microarchitectural model

and handles the semantic gap between architectural state and microarchitectural com-

ponents—addressing the challenge ofmultilevel reasoning outlined inChapter 1. While

45

Control Logic Synthesis Chapter 2

this initial effort carries some limitations in terms of the complexity of microarchitec-

tural optimizations control logic synthesis can support, it is nonetheless an important

step forward in supporting verifiable, agile SoC development. The end goal of this line

of work is a specification-forward development process, where properties such as cor-

rectness and design optimization metrics are first-class constraints. Importantly, this

research provides these guarantees hand-in-handwith automated code generation, us-

ing state-of-the-art program synthesis techniques to assist with error-prone aspects of

the development process. The benefit is many engineer-hours saved from complex

verification tasks.

46

Chapter 3

Loop Rerolling for Hardware

Decompilation

3.1 Introduction

Hardware description languages (HDLs) are a key tool in the hardware develop-

ment process. HDLs provide high-level programmatic abstractions for designing, sim-

ulating, verifying, and synthesizing hardware. Synthesizing HDL code generates a

layout of wires and logical gates represented as a graph called a netlist. After synthe-

sis, the resulting netlist loses many of the high-level details from the HDL code such

as loops, functions, and modules. The netlist is also considerably larger than the HDL

code that generates it.

This chapter introduces a new research problem: hardware decompilation, that is,

transforming a netlist into a semantically identical HDL program at a higher level of

abstraction. The idea is analogous to software decompilation, wherein an executable

binary is lifted back to source code in a high-level programming language, but targets

netlists (rather than executables) and HDLs (rather than general-purpose program-

47

Loop Rerolling for Hardware Decompilation Chapter 3

ming languages).

3.1.1 Motivating Hardware Decompilation

If we had a solution to the hardware decompilation problem, there are a number

of applications that would benefit hardware designers. This chapter only begins to

explore hardware decompilation and its applications, but our work shows that these

ideas have potential. Here is a non-exhaustive list of such applications:

Transpilation Between HDLs A netlist serves as a common target for all HDLs (e.g.,

SystemVerilog, Chisel [64], PyRTL [25], etc). When decompiling a netlist, the target

HDL does not need to be the same as the original HDL fromwhich the netlist was gen-

erated. Thus, hardware decompilation enables an automated translation between two

different HDLs: take the original HDL code, synthesize it into a netlist, then decompile

that netlist into the second HDL.

Speeding Up Simulation Time Simulation is a huge part of the hardware design

process, both for exploration and validation of designs. Designs are repeatedly sim-

ulated, edited, and simulated again. However, simulating netlists can be significantly

slower than simulating HDL source code [65]; thus, being able to recover HDL code

from a netlist can help improve simulation time.

Artifact Compaction A netlist can be significantly larger than the HDL code that

generated it [66]. One way to compress a netlist design (above and beyond using stan-

dard compression algorithms) would be to recover the much smaller, but equivalent,

HDL-level code.

The work presented in this chapter shows the feasibility of these three applications:

48

Loop Rerolling for Hardware Decompilation Chapter 3

transpilation (we convert designs between SystemVerilog and PyRTLHDL code); sim-

ulation time (we demonstrate that simulation of recovered HDL code is faster than the

corresponding netlist, withmean speedup of 6x); and artifact compaction (we demon-

strate that the recovered HDL takes significantly less space than the corresponding

netlist representation, withmean compaction of 39%across our benchmark suite). Fur-

ther, a hardware decompiler opens the way to other potential applications:

Understanding and Analysis In industry hardware development, it is common to

use third-party component libraries (also known as Intellectual Property or IP cata-

logs). These components are provided only as netlists, without the higher-level HDL

source code. Creating designs using these components makes human analysis and au-

tomated static analysis difficult; being able to recover high-level HDL would greatly

benefit such efforts. In this way, a hardware decompiler enables security and verifica-

tion analyses designed for higher-level HDL code but over a decompiled netlist (this

is one of the main motivators for software decompilation as well).

PropagatingNetlist Edits Back toHDL A common occurrence in hardware design is

to synthesize HDL code to a netlist and then discover that the resulting design needs

to be tweaked for various reasons (e.g., physical layout or timing closure). Given a

change made directly to the netlist, it can be extremely difficult to reason about what

specific parts of the original HDL codewould need to bemodified, and inwhat specific

way, in order to ensure that the updated HDL would then generate the desired new

netlist. Using hardware decompilation, that process can be entirely automated.

In a departure from the software decompilation analogy, hardware decompilation

has unique value during the design process, not just for reverse engineering or post-

design analysis. For instance, hardware synthesis and backend tools often mangle the

49

Loop Rerolling for Hardware Decompilation Chapter 3

module ripple_carry_adder #(parameter N)

(input [N-1:0] a, input [N-1:0] b, output logic

[N-1:0] sum);

logic cin, cout;

always_comb begin

cin = 1'b0;

for (int i=0; i < N; i++) begin

sum[i] = a[i] ^ b[i] ^ cin;

cout = a[i] & b[i] | a[i] & cin | b[i] & cin;

cin = cout;

end

end

endmodule

module accumulator (input [3:0] x, input clk, output

reg [3:0] acc);

logic [3:0] sum;

ripple_carry_adder #(.N(4)) adder(acc, x, sum);

always @(posedge clk) begin

acc <= sum;

end

endmodule

Figure 3.1: An accumulator circuit instantiated with a 4-bit ripple-carry adder written

in SystemVerilog.

semantics of the HDL code, producing a netlist that is not semantically equivalent to

the original design. Hardware designers then need to run simulations and logic equiv-

alence checks over the netlist for functionality and correctness verification. Thus, hard-

ware decompilation is a valuable tool during this design phase for speeding up simu-

lation time by lifting the netlist to a more compact and higher-level representation.

3.1.2 Hardware Loop Rerolling

There are a number of sub-problems that need to be solved to completely trans-

late all aspects of a netlist back to idiomatic HDL, namely identifying and recovering

a range of abstractions such as: loops; procedures; modules; protocol interfaces; and

clean divisions between control and data-path logic. We do not solve all of these sub-

problems in this work; instead we identify one of them as a stepping stone towards

solving the others. Our specific focus in this chapter is on recognizing repeated logic

50

Loop Rerolling for Hardware Decompilation Chapter 3

in netlists and decompiling them into loops in higher-level HDL code. We call this pro-

cess hardware loop rerolling, as it mirrors an analogous operation seen in software com-

pilers at the source and binary level [67, 68, 69, 70, 71, 72]. However, loop rerolling for

a hardware decompiler occurs in the context of hardware design, where the execution

model differs significantly from software. We discuss the differences between hard-

ware loop rerolling and software loop rerolling in Section 3.7. For brevity, henceforth

in the chapter we use “loop rerolling” to refer specifically to hardware loop rerolling.

In the original HDL code that synthesized the netlist, repeated logic is syntactically

expressed as loops (or recursion in the case of functional HDLs [73, 74, 75, 76]). For

example, Figure 3.1 presents code for an n-bit ripple-carry adder written in SystemVer-

ilog. To generalize this function to arbitrary n-bit designs, the code uses a for-loop pa-

rameterized over the length, or bitwidth, of the wire vectors. The body of the for-loop

generates a repeated pattern of add and carry operations which compute the sum of

each bit and push the carry-out bit forward to the next iteration.

During hardware synthesis, loops in the HDL code are completely unrolled in the

resulting netlist. The accumulatormodule in Figure 3.1 parameterizes the ripple-carry

adder over wire vectors of width 4. When this accumulator circuit is synthesized, it re-

sults in the netlist found in Figure 3.2. Upon closer inspection, we find that the for-loop

in Figure 3.1 is unrolled in the resulting netlist in Figure 3.2. There are four repetitions

of the same set of xor, and, and or operations with each of the four bits of the input x

and register acc. Each add and carry bit computation feeds into the proceeding one,

starting from the zeroth bit to the third bit, until they are concatenated together and

connected to the output register. Our goal, then, is to transform the netlist in Figure 3.2

into HDL code similar (though not necessarily identical) to that in Figure 3.1.

We break the loop rerolling problem into twomajor subproblems, and for each sub-

problem we adapt a different existing programming languages technique to create a
51

Loop Rerolling for Hardware Decompilation Chapter 3

Figure 3.2: Graph representation of a netlist for a 4-bit accumulator synthesized from

the HDL code in Figure 3.1. We use acc.next to denote that the register acc receives the

value and is updated in the next cycle.

solution. The first subproblem is loop identification, i.e., analyzing the netlist to detect

potential candidates for loops. We leverage techniques from software clone detection,

applying them to netlists instead of source code text or abstract syntax trees [77, 78].

Once we have identified a candidate, the second subproblem is the actual loop rerolling

itself, which requires reasoning about pre-, post-, and intra-loop dependencies that

need to exist in the generated code. We leverage techniques from solver-based pro-

gram synthesis [79] (not to be confused with hardware synthesis) in order to generate

semantically equivalent looping HDL code.

3.1.3 Contributions

The contributions of this chapter are:

• I introduce the new research problem of hardware decompilation, focusing specifi-

cally in this chapter on recovering loops in hardware designs.

52

Loop Rerolling for Hardware Decompilation Chapter 3

• I describe a technique to identify candidate slices of a netlist that are suitable for lift-

ing up as an HDL loop, based on software clone detection techniques (Section 3.3).

• I describe a technique to take a netlist slice and synthesize semantically equivalent

looping HDL code, based on program synthesis techniques (Sections 3.4 and 3.5).

• I implement our techniques1 and evaluate their effectiveness on a benchmark suite

of SystemVerilog and PyRTL hardware designs (Section 3.6). The evaluation exam-

ines the potential of hardware decompilation for transpilation, fast simulation, and

artifact compaction.

3.2 The Maki Intermediate Language

We present a bespoke intermediate language called Maki that is the common con-

necting format for each phase of our decompilation technique: the netlist is trans-

formed into Maki code, each phase of decompilation operates on Maki code, and the

final result is transliterated into HDL code. The purpose of Maki is to provide abstrac-

tions that sit between the low-level world of a netlist and the high-level world of a

full-featured HDL. As such, it should be able to completely specify a netlist but also

contain abstractions such as loops and arrays. This multi-level representation allows

us to represent both low-level and high-level code in the same program representation.

Figure 3.3 describes the grammar for Maki. A program in Maki starts with three

components: the input wire vectors (in), the output wire vectors (out), registers (reg),

and a series of statements that describe the netlist (stmt+). The input and output wire

vector and register declarations are lists of pairs, with the first element being a variable

identifier and the second element being the bitwidth of that wire vector (i.e., the length
1Available as a free and open-source artifact (https://doi.org/10.5281/zenodo.7686503) and online

repository (https://git.sr.ht/~zachs/hardware-loop-rerolling).

53

https://doi.org/10.5281/zenodo.7686503
https://git.sr.ht/~zachs/hardware-loop-rerolling

Loop Rerolling for Hardware Decompilation Chapter 3

Netlist ::= in out stmt+

in ∈ Input ::= (input (name width,)∗)

out ∈ Output ::= (output (name width,)∗)

reg ∈ Registers ::= (registers (name width,)∗)

stmt ∈ Statement ::= var := (wexp | aexp) | for-range index, range{stmt+}

wire ∈ WireVector ::= name | const value width

wexp ∈ WireExpression ::= wire | AND wexp wexp | OR wexp wexp | NOT wexp | XOR wexp wexp

| mux wexp wexp wexp | concat (wexp+) | select wexp (aexp | nexp)

aexp ∈ ArrayExpression ::= array-create length | array-store nexp var | array-ref var nexp

nexp ∈ NumExpression ::= var | num | (+| − | ∗ | ÷ |%) nexp nexp

index, name, var ∈ Identifier

length, num, range, value, width ∈ Integer

Figure 3.3: The grammar for Maki.

of the bit-vector that thewire can carry). Note that we use the termwire vector to distin-

guish a bit-vector typed variable in a Maki program, as opposed to a single-bit wire in a

netlist. Additionally, for expository purposes, the version of Maki presented here only

describes a subset of HDL features. The full Maki language and our implementation

supports sequential features including memory, and we include both sequential and

combinational hardware designs in our evaluation.

A variable in Maki is one of three types: wire vectors (bit-vector of a set length), in-

tegers, or arrays of wire vectors. Maki has two kinds of statements: variable definitions

(:=), and loops (for-range). A variable definition var := (wexp | aexp) creates and

binds a new wire vector or array expression to a variable identifier, deriving its value

from the right-hand side expression. A loop defines an integer loop-counter variable

index initialized to zero, a loop bound range, and a sequence of statements for the loop
54

Loop Rerolling for Hardware Decompilation Chapter 3

body.

The right-hand side of a variable definition can be either a wire expression wexp

or an array expression aexp. A wire expression denotes the operations common for

describing digital circuits (logical, arithmetic, bit select, wire concatenation). An array

expression denotes array declarations, as well as reading from and writing to arrays.

Array variables do not directly represent a specific hardware component, but are used

to store accumulated results of wire expressions (e.g., storing each result of a one-bit

add operation in a loop).

Figure 3.4 presents a selection of big-step structural operational semantics for Maki.

There are four main types of rules in the presentation of the semantics: (1) rules for

NumExpressions (NumExpOp), (2) rules for WireExpressions (WireExpOp, Mux0, Mux1),

(3) rules for ArrayExpressions (ArrayRef, ArrayStore), and (4) rules for Statements.

For space, we omit rules for NumExpression, WireExpression, and ArrayExpression. The

more interesting rules are around Registers. For sequential elements, such as registers,

there is a special store σReg which holds updates to sequential elements until the end

of one execution step. The rule StepCycle describes how Maki evaluates one step and

handles register elements. Statements s1 . . . sn evaluate all combinational expressions,

then r1 . . . rm update the register store σReg. After evaluating all statements, the updates

in σReg aremerged into the primary store σ so that the registers have the updated values

ready for the next step.

Note thatMaki programs describe one cycle of hardware execution (mapping from

the state present at the beginning of the cycle to the state present at the end of the cycle)

and are guaranteed to terminate. Specifically, all ForRange loops are finite and their

range is known a priori (from the number of repetitions found in the netlist).

55

Loop Rerolling for Hardware Decompilation Chapter 3

⟨x1, σ⟩ ⇓n n1 ⟨x2, σ⟩ ⇓n n2

⟨x1 ⊕n x2, σ⟩ ⇓n (n1 ⊕n n2)
NumExpOp

⟨w1, σ⟩ ⇓w v1 ⟨w2, σ⟩ ⇓w v2

⟨w1 ⊕w w2, σ⟩ ⇓w (v1 ⊕w v2)
WireExpBinop

⟨wc, σ⟩ ⇓w 0 ⟨w0, σ⟩ ⇓w v0

⟨mux wc w0 w1, σ⟩ ⇓w v0
Mux0

⟨wc, σ⟩ ⇓w 1 ⟨w1, σ⟩ ⇓w v1

⟨mux wc w0 w1, σ⟩ ⇓w v1
Mux1

⟨e, σ⟩ ⇓ v

⟨x := e, σ⟩ ⇓ σ[x 7→ v]
Define

r ∈ Registers ⟨e, σ⟩ ⇓w v

⟨r := e, σ, σReg⟩ ⇓r σReg[r 7→ v]
RegUpdate

⟨x, σ⟩ ⇓a a ⟨n, σ⟩ ⇓n n′

⟨array-ref x n, σ⟩ ⇓a a[n′]
ArrayRef

⟨x1, σ⟩ ⇓a a ⟨e, σ⟩ ⇓n i ⟨x2, σ⟩ ⇓w v

⟨x1 := array-store e x2, σ⟩ ⇓ σ[a[i 7→ v]]
ArrayStore

⟨s1, σ⟩ ⇓ σ1 ⟨s2, σ1⟩ ⇓ σ2

⟨s1 s2, σ⟩ ⇓ σ2

StmtSeq

⟨i := 0, σ⟩ ⇓ σ′ ⟨s1 . . . sn, σ′⟩ ⇓ σ1

⟨i := i+ 1, σ1⟩ ⇓ σ′
1 . . . ⟨s1 . . . sn, σ′

r−1⟩ ⇓ σr

⟨for-range i r s1 . . . sn, σ⟩ ⇓ σr

ForRange

⟨s1, σ⟩ ⇓ σ1 . . . ⟨sn, σn−1⟩ ⇓ σn . . .
⟨r1, σn, σReg⟩ ⇓r σ1

Reg . . . ⟨rm, σn, σ
m−1
Reg ⟩ ⇓r σm

Reg . . .

⟨s1 . . . sn r1 . . . rm, σ, σReg⟩ ⇓ σn[∀x∈σm
Reg

x 7→ σm
Reg(x)]

StepCycle

Figure 3.4: A selection of big-step structural operational semantics for Maki. The re-

lations ⇓n, ⇓w, ⇓a, and ⇓r are expressly for evaluating NumExpression, WireExpression,

ArrayExpression, and register updates, respectively. The environments is σ and σReg

map variable identifiers to values and registers.

Translating a Netlist to Maki

We translate a netlist to Maki by performing a topological sort over the netlist, start-

ing from the input wires. This sort linearizes the netlist graph in a way that gives the

same ordering for the same netlist (i.e., it is deterministic), and, in practice, groups

related operations together. Each gate (node in the graph) is translated to a Maki wire

vector variable definition bymaking the left-hand side the outgoing edge (thewire vec-

56

Loop Rerolling for Hardware Decompilation Chapter 3

tor being defined), while the right-hand side becomes a wire expression. We translate

the wire expression according to the wire operation and its arguments (the incoming

edges). The input and output wires are the initial wire vector variables. All other

edges in the graph become intermediate wire vector variables that are defined exactly

once. The result of the translation is a Maki program in SSA form. Figure 3.5 shows

Maki code for the 4-bit accumulator netlist from Figure 3.2 after linearization. Note that

the initial translation of the netlist to Maki only contains the low-level features of Maki

(i.e., only wire expressions defining wire vector variables). The high-level features,

like loops and arrays, will come from decompilation, at which point the design may

not be in SSA form.

Linearizing a netlist is efficient and works well in practice; a topological sort tends

to order related wires and operations together. However, it is possible a linearization

may disguise some repeated logic if the netlist is linearized differently for different rep-

etitions. Another possible approach without this limitation would be to operate on the

netlist graph directly. However, detecting repeated logic would amount to detecting

repeated subgraph isomorphisms, which is an NP-complete problem and expensive in

practice. We choose to linearize the code in order to leverage efficient techniques from

software clone detection.

3.3 Loop Identification

Here we describe our technique for identifying slices of repeated logic in a netlist

that may reasonably correspond to a loop in the higher-level HDL. Translating the

netlist to Maki linearizes the graph of wires and gates into a straight-line program in

SSA form. Our loop identification task is to find continuous segments of repeated

statements in the program.

57

Loop Rerolling for Hardware Decompilation Chapter 3

(input x 4)

(register acc 4)

t3 := const 0 1

t8 := select acc (0)

t9 := select x (0)

t10 := XOR t8 t9

t11 := XOR t10 t3

t12 := AND t8 t9

t13 := AND t8 t3

t14 := OR t12 t13

t15 := AND t9 t3

t16 := OR t14 t15

t17 := select acc (1)

t18 := select x (1)

t19 := XOR t17 t18

t20 := XOR t19 t16

t21 := AND t17 t18

t22 := AND t17 t16

t23 := OR t21 t22

t24 := AND t18 t16

t25 := OR t23 t24

t26 := select acc (2)

t27 := select x (2)

t28 := XOR t26 t27

t29 := XOR t28 t25

t30 := AND t26 t27

t31 := AND t26 t25

t32 := OR t30 t31

t33 := AND t27 t25

t34 := OR t32 t33

t35 := select acc (3)

t36 := select x (3)

t37 := XOR t35 t36

t38 := XOR t37 t34

t39 := AND t35 t36

t40 := AND t35 t34

t41 := OR t39 t40

t42 := AND t36 t34

t43 := OR t41 t42

t44 := concat (t38 t29 t20 t11)

acc := t44

Figure 3.5: Maki representation of the 4-bit accumulator netlist from Figure 3.2 after

linearization.

We take inspiration from software clone detection [77, 78]. In our case, a “clone” A

is a segment of Maki code that is identical to some other Maki code segment B, modulo

variable identifiers (i.e., identifiers are not considered). We specifically look for tan-

dem repeats [80], that is, a sequence of consecutive clones without anything in-between

the repeated code segments. The entire loop identification process consists of three

phases:(1) tokenize the Maki program; (2) scan the resulting token stream for tandem

repeats; (3) heuristically filter out tandem repeats that are undesirable candidates for

loop rerolling. The end result is a set of slices of the Maki program, each slice being a

candidate for loop rerolling.

3.3.1 Tokenization

We transform the Maki program into a sequence of tokens, similarly to lexical analy-

sis in parsing but applying certain abstractions to ignore irrelevant differences such as

variable identifiers (because hardware synthesis would have unrolled a loop and given

each iteration its own wires, thus including identifiers would mean that no clones can

58

Loop Rerolling for Hardware Decompilation Chapter 3

exist). Since statements in Maki are only two types (variable definitions and loops),

and there are no loops in the initial translation of the netlist to Maki, tokenizing a Maki

program considers only one case: variable definitions.

If the right-hand side of a variable definition is a wire expression, then we create a

token for the wire operation. Array expressions are ignored (because we start from a

netlist therewill be no array expressions initially). If thewire expression is assignment,

as in b := a, we record the bitwidth in the token as well as if it is an output wire vector

(see the last token in Figure 3.6 for an example). As an example, Figure 3.6 shows the

accumulator netlist (from Figure 3.5) as a token stream.

3.3.2 Finding Tandem Repeats

A repeated sequence of tokens with no interruptions indicates a candidate for loop

rerolling. Note that because Maki linearizes the netlist graph, not all loops in the origi-

nal HDL codemay result in identical code segments for each loop iteration (if different

iterations are linearized differently); we show in our evaluation that in practice using

the linearized formworkswell. Weuse a standard sequence alignment technique using

suffix trees to detect longest common prefixes [81]; this technique returns the location,

length, and number of repeats contained in each tandem repeat present in the token

stream, which when mapped back to the Maki code yields a potential loop rerolling

candidate.2 When we apply this process to the token stream in Figure 3.6, it shows

that the boxed tokens in that figure represent the first repetition of a tandem repeat of

length four.

Note that a tandem repeatmay not represent a valid loop inHDL code, i.e., this loop

identification process is an over-approximation of the token stream. This approxima-
2We filter out candidates of only two repetitions because these rarely correspond to useful loops.

59

Loop Rerolling for Hardware Decompilation Chapter 3

⟨select⟩ ⟨select⟩ ⟨XOR⟩ ⟨XOR⟩ ⟨AND⟩ ⟨AND⟩ ⟨OR⟩ ⟨AND⟩ ⟨OR⟩

⟨select⟩ ⟨select⟩ ⟨XOR⟩ ⟨XOR⟩ ⟨AND⟩ ⟨AND⟩ ⟨OR⟩ ⟨AND⟩ ⟨OR⟩

⟨select⟩ ⟨select⟩ ⟨XOR⟩ ⟨XOR⟩ ⟨AND⟩ ⟨AND⟩ ⟨OR⟩ ⟨AND⟩ ⟨OR⟩

⟨select⟩ ⟨select⟩ ⟨XOR⟩ ⟨XOR⟩ ⟨AND⟩ ⟨AND⟩ ⟨OR⟩ ⟨AND⟩ ⟨OR⟩

⟨concat⟩ ⟨register, 4⟩

Figure 3.6: A tokenized version of the 4-bit accumulator netlist from Figure 3.5.

tion is because our tokenization necessarily abstracts the Maki code and ignores things

like variable identifiers; a tandem repeat may, once we look at the actual wire defini-

tions it contains, not correspond to an iterative repetition of logic that is characteristic

of a loop.

On the other hand, it may also be the case that a tandem repeat can be successfully

rerolled but does not correspond to a loop in the originalHDL code. The reason for this

discrepancy is due to how hardware synthesis lowers HDL code to a netlist. During

hardware synthesis, higher-level operations over wire vectors expand to lower-level

operations over single-bit wires. For instance, consider an AND operation over two 4-bit

input wire vectors a and b. In an HDL like SystemVerilog or PyRTL, this can be written

simply as c = a & b, but in the resulting netlist this operation gets expanded into 4

repeated AND operations (for each bit in the wire vector) with the result concatenated

into an output wire. While this repeat is not a loop in the original HDL code, it is

nonetheless a sequence of repeated logic we can detect and reroll into a valid loop.

60

Loop Rerolling for Hardware Decompilation Chapter 3

3.4 Sketch Generation for Loop Rerolling

Given a loop candidate, i.e., a tandem repeat in the Maki code as identified using

the technique described in Section 3.3, we want to rewrite the candidate into Maki code

that uses higher-level loop and array abstractions. One might think that we could sim-

ply take a single element of the tandem repeat (corresponding to a single iteration of

the desired loop) and wrap it inside a loop expression. The reality is more difficult:

the newly-created loop must maintain the correct pre-, post-, and intra-loop wire de-

pendencies to guarantee semantic equivalence to the original Maki code, andmust also

infer non-trivial bit-selecting arithmetic (not present in the original low-level code) in

order to allow a single loop body to compute different iterations of the loop correctly.

One potential strategy would be to use heuristic code transformations that attempt

to preserve the necessary wire dependencies and semantic equivalence to the orig-

inal code. However, our experience is that the required heuristics are very design-

dependent and differ widely across different netlists, and that inferring the necessary

arbitrary bit-selecting arithmetic using static analysis is non-trivial and often fails.

Instead, we leverage sketch-based program synthesis [82]. This takes a sketch of

the desired code (i.e., Maki code containing holes for synthesis to fill in) and an oracle

for determining correctness (in this case, the original Maki program), then applies an

SMT solver to produce a new Maki program based on the provided sketch, with the

holes filled in, that is guaranteed to be semantically equivalent to the original Maki

program. In the remainder of this section we discuss how to automatically create a

suitable sketch given a specific tandem repeat. In the next section we discuss how to

use that sketch for Maki-specific program synthesis.

We add two new constructs to Maki’s syntax to represent holes, ?w and ?n, defined

as:

61

Loop Rerolling for Hardware Decompilation Chapter 3

?w ::= wire | array-ref var nexp

?n ::= nexp

?w represents a WireVector hole and can take the place of any Maki expression that

resolves to a wire vector-typed value (including reading from arrays of wire vectors).

?n represents a NumExpression hole and is used for filling in the indexing arguments to

array references, array stores, and wire vector bit-selects.

We begin sketch generation by picking an arbitrary element of the tandem repeat

to serve as the loop body and wrap it within a for-range expression to create an initial

sketch. Sketch generation is split into two main passes based on (1) reaching definitions

and (2) liveness properties of variables in the Maki program. These passes are made ef-

ficient by the fact that the netlist translated intoMaki is already in SSA form. Figure 3.7a

shows the initial sketch for our accumulator example.

3.4.1 Reaching Definitions Pass

The first pass for sketch generation uses reaching definitions information of wire

variables in a Maki program. This pass focuses on variable uses, and will only insert

holes into the right-hand side of variable definitions. We compute a use-def chain to

capture the reaching definitions of a Maki program. This data structure is commonly

used in compilers for data-flow analysis. The use-def chain of a program maps each

use of a variable to definitions which reach that use. Because our initial Maki netlist is

in SSA form, an element in a use-def chain maps to precisely one definition.

The use-def chain tells us where in the programwe have broken data dependencies

— in the form of unreachable or missing definitions — from inserting the new loop

sketch. With this, we perform a pass over the Maki program using Algorithm 1. The

62

Loop Rerolling for Hardware Decompilation Chapter 3

(input x 4)

(register acc 4)

t3 := const 0 1

for-range i, 4 {

t8 := select acc (0)

t9 := select x (0)

t10 := XOR t8 t9

t11 := XOR t10 t3

t12 := AND t8 t9

t13 := AND t8 t3

t14 := OR t12 t13

t15 := AND t9 t3

t16 := OR t14 t15 }

t44 := concat (t38 t29 t20 t11)

acc := t44

(a)

(input x 4)

(register acc 4)

t3 := const 0 1

for-range i, 4 {

t8 := select ?w (?n)

t9 := select ?w (?n)

t10 := XOR t8 t9

t11 := XOR t10 ?w

t12 := AND t8 t9

t13 := AND t8 ?w

t14 := OR t12 t13

t15 := AND t9 ?w

t16 := OR t14 t15 }

t44 := concat (?w ?w ?w ?w)

acc := t44

(b)

Figure 3.7: Intermediate reroll sketches of an accumulator design in Maki. (a) Initial

reroll sketch of the accumulator. Note that the sketch has not been made generic yet.

That is, before inserting any holeswe start by just copying the first iteration’s statements

into a new loop body. (b) Reroll sketch of the accumulator after inserting holes from

the reaching definitions pass Algorithm 1.

63

Loop Rerolling for Hardware Decompilation Chapter 3

map returned from the procedure informs which parts of which statements to update

with the given hole. The first loop (lines 3–10) scans the right-hand side of variable

definition statements in the loop body. First, the pass scans the right-hand side of each

variable definition statement in the loop body. If the use of a variable has no reaching

definition in the loop body, it replaces that variable use with a ?w hole. This pass also

scans the right-hand side of variable definitions for numeric and constant arguments—

replacing any numeric bit-select argument with a ?n hole (since any NumExpression-

typed value comes only from a wire select operation). It also replaces any const-typed

expression with a ?w hole.

In lines 7–8 the algorithm replaces any numeric bit-select argument with a ?n hole

(since any NumExpression-typed value will only come from a wire select operation).

In lines 9–10, the algorithm replaces any const-typed expression with a ?w hole. The

second loop (lines 11–14) scans the right-hand side of variable definition statements

after the loop. Next, the pass scans the right-hand side of variable definition state-

ments after the loop. The algorithm replaces any variable uses which have no reaching

definition with a ?w hole. After running Algorithm 1 over the code in Figure 3.7a we

get the intermediate sketch in Figure 3.7b.

3.4.2 Liveness Pass

The second pass for sketch generation uses liveness information ofwire variables in

a Maki program. This pass focuses on program variable definitions, and will introduce

new variable definitions into the sketch. This time, we compute a def-use chain to cap-

ture the liveness data in a Maki program. The def-use chain of a program maps each

variable definition to the uses which reach that definition. Note that a use-def chain

and def-use chain for the same program are not symmetric. There is information in

64

Loop Rerolling for Hardware Decompilation Chapter 3

Algorithm 1 Sketch generation pass based on reaching definitions. Statements is a list

of Maki statements indexed from 0 to n. UD holds the use-def chain for the Maki code

in Statements . Returns holes , a map of statement indices to a set of pairs of variable

identifiers with their respective holes.
1: procedure ReachingDefsPass

2: holes ← ∅

3: for all i ∈ {LoopStart , . . . ,LoopEnd} do

4: for all use ∈ Statements[i].rhs do

5: if UD [use] /∈ {LoopStart , . . . , i} then

6: holes[i]← holes[i] ∪ (use, ?w)

7: if Type(UD [use]) = NumExpression then

8: holes[i]← holes[i] ∪ (use, ?n)

9: if Type(UD [use]) = const then

10: holes[i]← holes[i] ∪ (use, ?w)

11: for all i ∈ {LoopEnd+ 1, . . . , n} do

12: for all use ∈ Statements[i].rhs do

13: if UD[use] /∈ {0, . . . , LoopStart− 1} ∪ {LoopEnd+ 1, . . . , n} then

14: holes[i]← holes[i] ∪ (use, ?w)

15: return holes

65

Loop Rerolling for Hardware Decompilation Chapter 3

one that is not captured in the other.

The information in the def-use chain tells us where in the program we have bro-

ken data dependencies—in the form of dead variables—from inserting the new loop

sketch. With the def-use chain, we perform a second pass over the Maki program us-

ing liveness information Algorithm 2. The map returned from the procedure tells us

which definitions to add to the sketch. There are two cases for modifying the sketch to

fix liveness:

1. Lines 5–6: The variable is dead. Any uses of the variable were removed when the

remaining statements in the original unrolled code were discarded. This case indi-

cates some data is feeding forward into subsequent loop iterations. From the accu-

mulator example, this is the carry-in bit (variable t3). The solution is to provide a

definition before the loop. The uses have already been replaced with ?w holes from

the reaching definitions pass (Algorithm 1).

2. Lines 7–10: The variable is defined within the loop and is live after the loop. This

case indicates that the loop is accumulating some results each iteration. The solution

is to declare an array before the loop, and update the array each iterationwith the just

defined variable. From the accumulator example, the intermediate sums are stored

in an array to be used after the loop.

After applying the liveness pass (Algorithm 2) over the code in Figure 3.7b we get

the final sketch in Figure 3.8a. Generating a sketch that preserves data dependencies

before, after, andwithin the new loop is general enough towork for netlists that contain

sequences of repeated logic. The resulting sketch over-approximates the number of

unknowns but it ensures that no data dependencies are broken after inserting the loop

and transforming the Maki program.

66

Loop Rerolling for Hardware Decompilation Chapter 3

Algorithm 2 Sketch generation pass based on liveness information. DU holds the def-

use chain for the Maki code in Statements . Returns NewDefs , a map from statement

indices to a set of pairs of variable identifiers with their respective definitions.
1: procedure LivenessPass

2: NewDefs ← ∅

3: for all i ∈ {LoopStart , . . . ,LoopEnd} do

4: for all def ∈ Statements[i].lhs do

5: if DU [def] ̸⊆ {LoopStart , . . . , i} ∪ {LoopEnd + 1, . . . , n} then

6: NewDefs[LoopStart − 1]← NewDefs[LoopStart − 1] ∪ (def , ?w)

7: if DU [def] ⊆ {LoopEnd + 1, . . . , n} then

8: x← FreshVariable

9: NewDefs[LoopStart − 1]← NewDefs[LoopStart − 1] ∪ (x, array-create LoopReps)

10: NewDefs[i]← NewDefs[i] ∪ (x, array-store ?n def)

11: return NewDefs

3.4.3 Properties of Sketch Generation

If a tandem repeat from loop identification is a valid, rerollable loop then, with

one caveat, our sketch generation process introduces sufficient holes to reroll it. The

caveat is that that we do not consider alternative schemes for bundling wires together

in the netlist other than the one present in the original Maki code. Doing so could

potentially allow more identified loops to be rerolled than our current technique, and

is an interesting future direction.

We argue that, modulo the wire bundling scheme, this property is true because all

points of dependencies between variables inside and outside the loop are addressed

through ?w and ?n holes. That is, initially creating the loop sketch (as in Figure 3.7a)

breaks some data dependencies in the Maki program. However, our pre-, post-, and

intra-loop strategies for patching the dependencies cover all relevant points (aided by

67

Loop Rerolling for Hardware Decompilation Chapter 3

(input x 4)

(register acc 4)

t3 := const 0 1

t4 := array-create 4

t16 := ?w

for-range i, 4 {

t8 := select ?w (?n)

t9 := select ?w (?n)

t10 := XOR t8 t9

t11 := XOR t10 ?w

t4 := array-store ?n t11

t12 := AND t8 t9

t13 := AND t8 ?w

t14 := OR t12 t13

t15 := AND t9 ?w

t16 := OR t14 t15 }

t44 := concat (?w ?w ?w ?w)

acc := t44

(a)

(input x 4)

(register acc 4)

t3 := const 0 1

t4 := array-create 4

t16 := t3

for-range i, 4 {

t8 := select acc (i)

t9 := select x (i)

t10 := XOR t8 t9

t11 := XOR t10 t16

t4 := array-store i t11

t12 := AND t8 t9

t13 := AND t8 t16

t14 := OR t12 t13

t15 := AND t9 t16

t16 := OR t14 t15 }

t44 := concat ((array-ref t4 3) (array-ref t4 2)

(array-ref t4 1) (array-ref t4 0))

acc := t44

(b)

Figure 3.8: (a) Final reroll sketch of the accumulator design after inserting holes from

the liveness pass Algorithm 2. (b) The rerolled designed for the accumulator sketch

in (a) after program synthesis.

the reaching definitions and liveness analysis of the variables in the original SSA form

of the program), and the holes are flexible enough that if there exists a way to reroll

the candidate into a valid loop then the resulting sketch provides at least one way.

3.5 Program Synthesis for Loop Rerolling

With our generated sketch of the hardware design with loops, we want to find a

solution that fills in the holes and produces a design equivalent to the original netlist.
68

Loop Rerolling for Hardware Decompilation Chapter 3

We use an established program synthesis technique called counterexample-guided in-

ductive synthesis (CEGIS) [79]. CEGIS completes a program sketch by searching for a

candidate solution (i.e., a way to fill the holes) and then verifying it against the refer-

ence specification. Here, the reference specification is the unmodified netlist. CEGIS

searches for a solution by translating the candidate to constraint formulas and feeding

them into an SMT solver. While verifying a candidate solution, if the SMT solver finds

a counterexample that falsifies the solution, CEGIS generates a new candidate solution

taking into account previously found counterexamples. This solve-verify loop contin-

ues until a solution is synthesized that satisfies the specification, or it determines that

a solution does not exist.

3.5.1 Solver-Aided Maki

We wrote a symbolic interpreter that “runs” programs written in Maki. The sym-

bolic interpreter keeps track of the program’s state—that is, the variable definitions—

where all input wires to the netlist are symbolic bitvectors. This process compiles a

netlist specification into a set of symbolic constraints. These constraints enable solver-

based verification and synthesis. These solver-aided functions come from Rosette, a

Racket framework for CEGIS [27].

Rosette is a language-driven framework for building program synthesizers. By

defining a language and an interpreter for that language, Rosette can lift the evaluation

of programs in that language to work with symbolic values. This “symbolic evalua-

tion” is the process that converts a program into a set of constraint formulas that an

SMT solver can understand.

69

Loop Rerolling for Hardware Decompilation Chapter 3

3.5.2 The Loop Rerolling Pipeline

Continuing the accumulator example, loop rerolling via program synthesis works

as follows. Given a netlist translated to Maki, and a sketch of that netlist with loops

generated by the methodology in Section 3.4, do the following:

1. First, symbolically interpret the netlist.

2. Using a CEGIS solver, produce a candidate solution for the sketch.

3. Symbolically interpret the candidate solution and verify it against the reference

netlist. Check the equivalence of each of the symbolically defined output wires.

4. If the solver finds a counterexample, add it to the current set of constraints, then

generate a new candidate. Repeat until it determines a solution does not exist.

5. Otherwise, if the candidate satisfies the reference netlist specification, substitute the

holes in the sketch according to the expressions found in the solution. The resulting

program is the semantically-equivalent synthesized Maki code with loops.

Figure 3.8b presents the synthesized code with a rerolled loop for the 4-bit accu-

mulator design. Note that t16 is initialized to a constant before the loop (as a result of

the pre-loop dependency check), and is updated at the end of each iteration inside the

loop. This variable holds the carry-in and carry-out values for the adder. The ?n holes

inside the loop body fill in with loop variable i. ?w holes inside the loop body fill in

with previously definedwire variables. The ?w holes after the loop in the concat opera-

tion resolve to array-ref operations that retrieve the stored sum of each of the four bits

of the input wires. These array-ref holes correspond to the post-loop dependencies

introduced in sketch generation.

70

Loop Rerolling for Hardware Decompilation Chapter 3

module accumulator (input clk, input [3:0] x,

input reg [3:0] acc);

logic t0; logic [3:0] t1;

always_comb begin

t0 = 1'b0;

for (int i=0; i < 4; i++) begin

t1[i] = (acc[i] ^ x[i]) ^ t0;

t0 = ((acc[i] & x[i]) | (acc[i] & t0)) |

(x[i] & t0);

end

end

always_ff @(posedge clk) begin

acc <= {t1[3], t1[2], t1[1], t1[0]};

end

endmodule

(a)

from pyrtl import *

acc = Register(bitwidth=4)

x = Input(bitwidth=4)

t0 = Const(0, bitwidth=1)

t1 = [None]*4

for i in range(4):

t1[i] = (acc[i] ^ x[i]) ^ t0

t0 = ((acc[i] & x[i]) | (acc[i] & t0)) | (x[i] & t0)

acc.next <<= concat(t1[3], t1[2], t1[1], t1[0])

(b)

Figure 3.9: Decompiled SystemVerilog (a) and PyRTL (b) code for the 4-bit accumu-

lator.

71

Loop Rerolling for Hardware Decompilation Chapter 3

3.5.3 Output to HDL Code

After loop rerolling we can easily translate Maki code to an HDL. For instance, our

tool translatesMaki to SystemVerilog andPyRTL [25]. Figures 3.9a and 3.9b present the

rerolled and decompiled 4-bit accumulator in SystemVerilog and PyRTL, respectively.

In Section 3.1, we presented the original SystemVerilog code for the accumulator in

Figure 3.1. Note the similarity between the rerolled code in Figure 3.9a and the original

code3.

Also note that the original SystemVerilog code splits the design into two separate

modules (or two functions, for PyRTL). Here, the decompiler emits the design as one

flattenedmodule. Procedural abstraction is one branch of future work, whereby a can-

didate fragment of the netlist is wrapped into a module or function body, and all oc-

currences of the fragment are replaced with a module instantiation/function call.

3.6 Evaluation

Here we evaluate our implementation of the loop identification and rerolling tech-

niques. Our implementation has two parts that span two languages: we implement

loop identification in Python 3.9 and loop rerolling (sketch generation plus program

synthesis) in Racket 8.7 using the Rosette CEGIS framework [27]. To evaluate our loop

identification and rerolling we use two sets of hardware design benchmarks written in

two different HDLs: PyRTL (Table 3.1) and SystemVerilog (Figure 3.10). The PyRTL

benchmarks are a mix of combinational and sequential designs for basic components

such as adders, shifters, and caches.

The SystemVerilog benchmarks are taken from the BaseJump Standard Template
3For readability, we rewrite expressions in the rerolled loops from the “three-address code” form

into nested wire expressions.

72

Loop Rerolling for Hardware Decompilation Chapter 3

Table 3.1: PyRTL benchmark information. “Loops” are the number of loops present

in the original source code. The “small”, “medium”, and “large” columns denote a

particular parameterization of the design and the number of wires and gates in the re-

sulting netlist. A benchmark noted as ’recursive’means that the loops are implemented

via recursive function calls.

Small Medium Large

Module Loops Wires Gates Wires Gates Wires Gates

Barrel shifter 1 44 42 196 194 839 836

Cache (directed) 1 199 158 391 310 775 614

Cache (n-way set associative) 1 165 125 326 249 645 495

Demultiplexer 1 88 83 274 269 507 502

Priority encoder (recursive) 1 79 57 146 107 277 205

Pseudo-random number generator 1 43 40 139 136 526 522

Ripple-carry adder (iterative) 1 79 74 295 290 583 578

Ripple-carry adder (recursive) 1 97 92 385 380 769 764

Shifter 1 160 140 320 284 640 572

Library [83] (BaseJump STL) found in the BSG Micro Designs repository [84]. Base-

Jump STL is a standard template library of components commonly found across many

different hardware designs. We chose designs from BaseJump STL without regard

to their original SystemVerilog code containing loops in the interest of finding loop

rerolling opportunities where there were none originally.

Our translator from netlist to Maki operates on PyRTL-format netlists. For Base-

Jump STL we converted each module into BLIF format [85] via Yosys [31] and im-

ported it into PyRTL to have the netlist in the correct format. Due to this multi-step

conversion process we only evaluate a subset of the BaseJump STL modules. For in-

stance, PyRTL does not support asynchronous designs and so those modules were not

included.

73

Loop Rerolling for Hardware Decompilation Chapter 3

Figure 3.10: Heat map of benchmark sizes for the BaseJump modules, shows count

of wires and gates for each parameterization (S/M/L) of the module. The number of

loops present in the SystemVerilog source code is shown in parentheses next to the

module name.

We parameterize each benchmark over three configurations we denote as “small”,

“medium”, and “large”; for many designs this meant setting the width parameter to

16, 32, and 64, respectively. Note that the size categories are benchmark-specific, not

meant to be compared across benchmarks. We test our implementation on the netlists

produced from these modules for each size configuration.

We rely on PyRTL’s compiler for netlist linearization; when building a netlist PyRTL

performs a topological sort over wires in the graph and assigns them a deterministic

order where related operations are close together in practice. With this sort, our tool

lifts each netlist toMaki, tokenizes the code, and performs loop identification. TheMaki

program and loop information then feed into the loop rerolling phase. If the sketch is

satisfiable, the loop rerolling tool outputs the decompiled HDL code. Note that our

74

Loop Rerolling for Hardware Decompilation Chapter 3

decompiler supports PyRTL and SystemVerilog as an output language regardless of

whichHDLgenerated the input netlist. Both phases of loop identification and rerolling

were run on a machine with a 6-core Intel Xeon E5-2420, 32 GB RAM, running Ubuntu

18.04.5.

3.6.1 Loop Identification and Rerolling Results

Table 3.2 presents the loop rerolling results over the nine PyRTL benchmarks. Since

a netlist represents a particular parameterization of a hardware design, we ran loop

identification and rerolling on three configurations (“small”, “medium”, and “large”)

for each benchmark. Each PyRTL benchmark contained one loop in its source code,

and our decompiler identified and rerolled that loop in each case. The decompiler

often found more loops than were contained in the original HDL code; for example,

on the large version of the priority encoder the decompiler identified 6 potential loops

and rerolled 4 of them. Loop identification over-approximates the number of loops

that can be rerolled. Thus, some potential loops are false positives and the decompiler

does not always reroll as many loops as it finds.

PyRTL can also represent repeated logic using recursive functions. We include two

recursive benchmarks (priority encoder and the recursive ripple-carry adder) in our

evaluation to show that at the netlist level a recursive PyRTL function still gets unrolled

into a set of repeated gates and wires, and our loop rerolling tool can still identify and

reroll those operations into an equivalent loop (though converted into an iterative loop

rather than recursion).

Figure 3.11 presents the loop rerolling results over the BaseJump STL benchmarks.

These benchmarks are generally larger than the PyRTL benchmarks and that is re-

flected in the number of loops rerolled. The large version of “Fpu count leading zeros”

75

Loop Rerolling for Hardware Decompilation Chapter 3

Table 3.2: PyRTL benchmark loop identification and rerolling results. The “small”,

“medium”, and “large” rows for each benchmark denote a particular parameterization

of the design. Both the loop identification and loop rerolling phases have a timeout of

1 hour.

Module Size
Loops found /

expected

Loops

rerolled

Loop detection

time (s)

Loop rerolling

time (s)

Small 1 / 1 1 0.1 6.8

Barrel shifter Med. 1 / 1 1 0.6 11.4

Large 1 / 1 1 6.3 27.9

Small 1 / 1 1 0.4 8.8

Cache, directed Med. 9 / 1 1 1.8 53.1

Large 1 / 1 1 7.1 198.3

Small 1 / 1 1 0.3 13.8

Cache, n-way Med. 3 / 1 2 0.8 38.9

set associative Large 4 / 1 2 4.2 146.3

Small 1 / 1 1 0.2 6.3

Demultiplexer Med. 3 / 1 2 1.1 16.3

Large 2 / 1 1 4.1 26.7

Small 3 / 1 2 0.1 9.1

Priority encoder Med. 5 / 1 3 0.3 16.2

(recursive) Large 6 / 1 4 0.8 31.1

Small 1 / 1 1 0.1 8.4

Pseudo-random Med. 1 / 1 1 0.2 14.2

number generator Large 1 / 1 1 2.5 78.9

Small 1 / 1 1 0.1 5.9

Ripple-carry adder Med. 1 / 1 1 0.6 8.1

(iterative) Large 1 / 1 1 3.9 12.1

Small 2 / 1 1 0.1 6.9

Ripple-carry adder Med. 2 / 1 1 2.0 24.1

(recursive) Large 2 / 1 1 15.6 102.5

Small 9 / 1 1 0.3 21.1

Shifter Med. 1 / 1 1 1.0 21.5

Large 33 / 1 1 5.9 441.8

76

Loop Rerolling for Hardware Decompilation Chapter 3

Figure 3.11: Number of loops rerolled across all BaseJump benchmarks (across all pa-

rameterizations). The number of expected loops present in the SystemVerilog source

code is shown in parentheses next to the module name.

77

Loop Rerolling for Hardware Decompilation Chapter 3

rerolled 28 of the 31 loops identified, themost rerolled in our evaluation. Also note that

the BaseJump STL modules have instances where the original SystemVerilog code has

no loops, but after analyzing the netlist our tool finds opportunities to reroll loops.

Overall, with the exception of “Fpu add subtract”, our tool identified and rerolled at

least one loop in every module (often more).

Discussion

Considering the original HDL code in our benchmarks contained few loops, it is

noteworthy that our tool often found and rerolled many more loops. There are two

explanations for this phenomenon: (1) The HDL code may explicitly repeat the logic

instead of parameterizing it over a loop. The BaseJump STL modules with zero ex-

pected loops often do this in the original SystemVerilog code. Nevertheless, this point

is helpful to the decompiler user for understandingwhat the repeated operation is and

how it is parameterized. (2) As noted in Section 3.3.2, when hardware synthesis low-

ers HDL code to a netlist, common higher-level operations in the original HDL code

are expanded into chunks of lower-level repeated logic, increasing the loop identifica-

tion count. The lowering process introduces non-obvious looping behavior that was

not present in the higher-level design. Nonetheless, our tool identifies these repeated

wire operations and attempts to reroll them. If successful, this kind of loop uncovers

a repeated operation that is likely part of some larger structure that was lowered dur-

ing synthesis. For these kinds of loops we argue this is beneficial for the decompiler

user as the rerolled loop identifies some repeated logic (out of a large graph of similar

nodes) and generates a concise representation in high-level code.

There are instances where we reroll loops that do not cover all of the iterations of

the original loop. Either the first or last iterations may be missing. This mismatch is

due to the limitations of our tandem repeat analysis during loop identification where
78

Loop Rerolling for Hardware Decompilation Chapter 3

token sequences must be exact matches. In some cases, the first or last iteration of a

repeat may differ in a way that results in a different token sequence from the other

repeats.

Based on our evaluationwe find that nested loops in the original HDLwill translate

to larger non-nested loops in the decompiled HDL. For instance, the “Priority encode

one hot out” benchmark actually has a nested loop inside one of its submodules. How-

ever, after conversion to Verilog and then to BLIF, the nested loops are essentially un-

rolled and the resulting netlist loses any notion of it. In this case, the best our technique

recovers is a single loop with a larger body.

For netlist linearization, our evaluation empirically shows that a topological sort

works well in practice. Alternative approaches to linearizing a netlist are interesting to

consider (andmight be part of future work). While we rely on the PyRTL compiler for

netlist linearization, the utility of the topological sort is not limited to PyRTL-produced

netlists as we also evaluate netlists generated from SystemVerilog code. These netlists

have also undergone optimization passes in Yosys before being output to BLIF, show-

ing that loop identification is also effective in the presence of optimizations.

Loop identification and rerolling times are shown in Figures 3.12a and 3.12b, re-

spectively. One limitation of our loop rerolling tool comes from the constraints it sends

to the SMT solver. For large netlists, solving times dramatically increase from a few

seconds to minutes to over an hour. As Figure 3.12b shows, the “Fpu add sub” mod-

ule timed out (mainly due to the netlist’s size). Exploding solving times is a known

problem in program synthesis and research has studied how to diagnose and fix per-

formance issues related to symbolic evaluation [32]. To scale to larger netlists, our tool

needs to overcome this bottleneck at the program synthesis stage.

While the benchmarks in our evaluation are small, their module-level behavior is

representative of the kinds of components used in real-world hardware designs—this
79

Loop Rerolling for Hardware Decompilation Chapter 3

(a) (b)

Figure 3.12: (a) Histogram of loop identification performance across all BaseJump

benchmarks. (b) Histogram of loop rerolling performance across all BaseJump bench-

marks. The two points in the “3600+” bin indicate a timeout for the “Fpu add subtract”

module sizes “medium” and “large”.

is onemotivation for choosing the BaseJump STL. To scalemodule-level hardware loop

rerolling to larger designs, there are techniques that can infer module boundaries in

large netlists [86]. These techniques are orthogonal and complementary to ourwork in

hardware decompilation in that they can be used to decompose a netlist into modules

which then can be decompiled by our technique.

80

Loop Rerolling for Hardware Decompilation Chapter 3

3.6.2 Transpilation Between HDLs

Since our hardware decompilation tool operates over a common IR, Maki, as well

as outputs SystemVerilog and PyRTL, it enables automated translation betweenHDLs.

For example, we can take a design that starts in SystemVerilog, synthesize it to a netlist,

and decompile it into PyRTL code. The PyRTL code for the rerolled accumulator in Fig-

ure 3.9b is one example of transpilation from SystemVerilog. All of the PyRTL bench-

marks in our evaluation can be synthesized and decompiled into SystemVerilog. The

same is true for decompiling the SystemVerilog benchmarks into PyRTL.

AsMaki is a small language, wemapped allMaki constructs to equivalent constructs

in SystemVerilog and PyRTL. One point is that Maki is closer in design to PyRTL than

SystemVerilog. Since the clock is implicit in Maki and PyRTL, we add a clock to the ex-

ported SystemVerilog code and wrap any sequential logic into a always_ff @(posedge

clk) block where clk is the added clock. All combinational logic is wrapped in a

always_comb block.

3.6.3 Speeding Up Simulation Time

In this section we compare simulation times for the BaseJump STL modules that

successfully rerolled loops against their original netlists. We run the simulations using

Verilator, an open-source SystemVerilog simulation tool [87]. For each module, we

supply pseudorandom inputs to the netlist and decompiled HDL code.

Figure 3.13 presents the speedups for simulating eachmodule. For amajority of the

modules, hardware loop rerolling speeds up simulation time, with “Fpu cmp” seeing

the largest speedup at 30x. Overall, themean speedup is 6x. However, smallermodules

such as “And” and “Xor” did not gain any speedup. The reason for the slower times ties

back to some of the limitations of our approach. In particular, netlist linearization can

81

Loop Rerolling for Hardware Decompilation Chapter 3

Figure 3.13: Speedups in Verilator simulation times across all “large” versions of

the BaseJump STL modules that successfully rerolled loops compared to the original

netlist.

affect the performance of rerolled loops in Verilator simulation. For instance, if a netlist

linearization shifts the bit-select for a wire vector by 2 from the original monotonic or-

dering, our loop reroller will still reroll it into a loop. However, instead of referencing

the bit-select with loop index i the synthesizer generates a more complicated arith-

metic expression (e.g., (i + 2) % n, for a wire vector with bitwidth n). While still a

correct loop with respect to the original netlist, the loop eludes easily applicable opti-

mizations in Verilator. We can overcome these slowdowns in some cases by rewriting

single-operation loops into one-line bitwise operations where feasible (e.g., c = a &

b).

3.6.4 Artifact Compaction

To evaluate the benefits of loop rerolling for decompilation, we also measured arti-

fact compaction. Since the goal of decompilation is to produce HDL code, we compare

82

Loop Rerolling for Hardware Decompilation Chapter 3

the rerolled code translated to PyRTL with the original Maki code translated to PyRTL

without loop rerolling. We record the size of the artifact in bytes after the it is com-

pressed with gzip on the highest compression level.

Overall, as parameter sizes grow, so does the degree of compaction between the

rerolled code and the netlist. For some designs this is a significant difference, seeing

up to 90% artifact compaction (the “large” versions of the PyRTL barrel shifter and iter-

ative ripple-carry adder) and 39% compaction on average across the entire benchmark

suite.

Loop rerolling alone makes a sizable impact here. However, a few outliers, typi-

cally smaller netlists, do not benefit as much from loop rerolling. For instance, as one

of the smallest netlists, the BaseJump “Fifo tracker” module actually grew in size after

rerolling. Due to the small size of the original netlist, loop rerolling has a proportion-

ally small effect.

3.7 Related Work

3.7.1 Netlist Reverse Engineering

Research in this area presents techniques to recover module functionality, control

logic, and data flow from a netlist graph. Most netlist reverse engineeringwork focuses

on security scenarios, such as finding Trojans in digital circuits. There are two primary

approaches for analyzing netlists: structural and functional. A structural analysis con-

siders the shape, or topology, of the circuit to identify subcircuits [88] and recover

control logic [89, 90, 91].

Functional analyses recover data flow and match subcircuits to templates of com-

monly used components. These analyses leverage QBF/SAT solvers to identify library

83

Loop Rerolling for Hardware Decompilation Chapter 3

components andword-level data paths [92, 93, 94, 95]. Otherwork identifies high-level

blocks through graph embeddings and connectivity information [96]. Subramanyan

et al. combine structural and functional analyses for reverse engineering circuits—first

identifying submodule boundaries using a structural analysis, thenmapping potential

modules to a component template library via functional analysis [86].

These techniques in netlist reverse engineering work by producing a more struc-

tured netlist graph or finite-state machine annotated with higher-level constructs—as

opposed to generating HDL code. The analogy to software binary reverse engineering

is akin to recovering a control-flow graph and annotating it without decompiling to C

code.

Further, work in netlist reverse engineering focuses on extracting structural infor-

mation of the circuit, but not necessarily recovering the HDL code that synthesized the

netlist. Some recent work makes the step to recovering register-transfer level (RTL)

code [97, 98], but does not recover higher-level programming abstractions as our work

does. We differentiate hardware decompilation from previous work that only recovers

RTL code. Hardware decompilation lifts low-level details in the netlist to higher-level

programmatic abstractions found in HDL code (such as loops, procedures, modules,

etc).

3.7.2 Program Synthesis

Recent research has also used program synthesis techniques to automatically gen-

erate HDL code. Sketchilog generates Verilog code given a sketch, but is limited to

combinational circuits [36]. VeriSketch is another sketch-based HDL code generation

tool that uses CEGIS and information flow tracking to synthesize combinational and

sequential circuits that adhere to a set of security properties [37]. Both of these tools

84

Loop Rerolling for Hardware Decompilation Chapter 3

focus on the design aspects of hardware, whereas our work comes from the opposite

direction with decompilation.

Although in a different domain, another area of research conceptually related to

our work uses rewrite-driven equality saturation to find loops in 3D geometric mod-

els [99]. The motivation is similar in that decompiled low-level triangle meshes used

in 3D printing are large and unstructured. Instead of syntax-guided program synthe-

sis, Nandi et al. use rewrite rules via an equality saturation engine to reroll loops in

a DSL for Constructive Solid Geometry. Using an equality saturation engine such as

egg [100], a rewrite-driven approachmay improve synthesis times in our loop rerolling

tool.

3.7.3 Software Loop Rerolling

Research in software loop rerolling focuses on rerolling for code size reduction,

targeting resource-constrained environments [67, 68, 69, 70]. Modern compilers also

have loop rerolling strategies. LLVM implements a heuristic-based loop rerolling pass

which operates over LLVM IR and rerolls partially unrolled iterations of single-block

loops. No previous work in loop rerolling uses program synthesis techniques to reroll

loops.

Recent work looks at loop rerolling at the source-code [71] and binary level [72].

RoLAG rerolls loops by aligning blocks of straight-line code in SSA form [71]. Aligned

SSA graphs correspond to isomorphic code and are then rolled into a single loop. Roll-

Bin rerolls loops at the binary level using a customdata-dependency analysis to handle

shuffled instructions and loop-carry dependencies [72]. RollBin identifies loops and

infers their unrolling factor by observing memory accesses.

Our work differs from software loop rerolling because the semantics and execution

85

Loop Rerolling for Hardware Decompilation Chapter 3

model of HDLs and netlists are different from that of software and binary executa-

bles. Importantly, the semantics of a loop in an HDL is different from loops in software.

Unlike the existing work, our work specifically uses program synthesis to generate

rerolled higher-level code—using symbolic evaluation to guarantee that the rerolled

loop code is semantically equivalent to the original netlist.

3.8 Conclusion

In this chapter we defined and explored a new problem—hardware decompilation.

This problem is the task of lifting a low-level netlist back to structured, high-level HDL

code. It is a large problem, so in this chapter we tackle the first step for decompiling

high-level HDL code with loops. Inspired by techniques in software clone detection,

wefind candidate loops in netlists using a token-based analysis and sequencematching

algorithms. With loop information, we generate a sketch of the code with rerolled

loops and send it to a program synthesis tool that can reason about hardware designs.

We evaluate hardware loop rerolling on a set of SystemVerilog and PyRTL hardware

design benchmarks, noting the number of loops successfully identified and rerolled,

and its impact on transpilation between HDLs, faster simulation times over netlists,

and artifact compaction.

This chapter lays the groundwork for future research in hardware decompilation.

The hardware-oriented program synthesis tool we developed opens the door to an

entire class of problems that can be solved through this technique. In the future we

envision developing more circuit-based analyses to recover other high-level program-

ming features and extending the program synthesis tool to decompile those back into

HDL code.

86

Chapter 4

A Memory Design Language for

Automated Memory Mapping

4.1 Introduction

Hardware description languages (HDLs) such as Verilog drive SoC development.

When writing behavioral HDL code, engineers need to target different technologies to

support different deployment platforms (for simulation, ASIC, FPGA, etc.). However,

industry-standard HDLs are not equipped to cleanly target these different platforms

from a single, generic implementation. As a result, a standard approach is for engi-

neers to duplicate parts of the code into separate blocks for each technology, imple-

menting the same functional behavior but targeting the specialized semantics of each

specific technology. High-level source code is often littered with ifdef blocks, akin

to software targeting specific features of different ISAs (x86, ARM, etc.), but exacer-

bated by the diversity and divergence of the many ASIC and FPGA technologies that

engineers need to target (see Figure 4.1).

This practice is particularly problematic for memories, where the structure and se-

87

A Memory Design Language for Automated Memory Mapping Chapter 4

module regfile:
ifdef
Verilator

ifdef
UltraScale

ifdef
SkyWater

module cache:
ifdef
Verilator

ifdef
UltraScale

ifdef
SkyWater

module bht:
ifdef
Verilator

ifdef
UltraScale

ifdef
SkyWater

Figure 4.1: An illustration of manual memory technologymapping using ifdef blocks

in each memory module. Each memory module requires ifdef blocks for each tar-

getable technology which each block matching the semantics of that memory.

mantics of different memory technologies vary widely with respect to deployment

platform. There have been attempts to address this problem — the state-of-the-art,

called memory inference, is a syntactic template-based matching approach where the

designer writes HDL code following syntactic patterns dictated in technology-specific

vendormanuals, which allows automatedmapping for that vendor’s technology [101].

However, memory inference only works for one specific technology at a time (i.e., the

developer can only use it to target one technology, not a set of technologies) and adop-

tion is limited to FPGAs. Sowhilememory inference helps engineers in a restrictedway

with one aspect of the problem, they still need to develop separate solutions for other

technologies, including for different FPGAs which need separate templates. These

practices result in a brittle code base, with repeated but subtly different technology-

specific blocks of code, increasing the burden on verification, agility, and extensibility.

In this work, we focus on the problem of automated technology mapping for

memories. Our insight is incorporating an abstract memory representation into the

HDLwhich is “write once, map anywhere”, meaning thememory representation has a
88

A Memory Design Language for Automated Memory Mapping Chapter 4

rich enough semantics to target all of the relevant technologies behind a single, generic

interface. We implement this abstract memory representation as an extension of the

Python-based HDL PyRTL [25], named Elephant1, which performs automated tech-

nologymapping for memories across multiple platforms and technologies using a sin-

gle, common HDL-level memory description.

Of course, there are already a wealth of existing hardware designs written in other

HDLs which target specific memory technologies. Instead of porting these existing

code bases to Elephant, we present a hardware decompilation-based memory identi-

fication technique which lifts memories from a gate-level netlist to Elephant, enabling

technology re-targeting. A netlist is a graph representation of thewires and logical gates

describing a digital circuit and serves as a common, language-agnostic representation

format for hardware designs. The key insight of our approach enables technology tar-

geting and re-targeting through a unified set of algebraic rewrite rules, which specify

both memory compilation and decompilation. One direction (⇝) specifies memory tech-

nology mapping, where the opposite direction (⇝) specifies memory decompilation.

We show that Elephant effectively targets five backends for three different tech-

nology platforms—for simulation, ASIC, and FPGA—from a single interface over a

suite of representative designs. Further, we evaluate our decompilation-based mem-

ory lifting technique against the state of the art, demonstrating higher accuracy, infer-

ringmore semantics of thememories, and enabling automated re-targeting. Ourmajor

contributions are:

• An abstractmemory representation called Elephantwhich targets three common

deployment platforms, concretely realized as an extension to the PyRTL HDL

(Section 4.3).
1Our abstraction can be added to any HDL; we choose PyRTL to make a concrete implementation

for evaluation.

89

A Memory Design Language for Automated Memory Mapping Chapter 4

• A hardware decompilation-based memory lifting technique, implemented as a

bespoke equality saturation procedure, capable of identifying memories (spe-

cialized for various technologies) in gate-level netlists that the state of the art

cannot (Section 4.4).

• We show that our technique enables technology re-targeting, starting from a de-

sign mapped to one technology and re-targeting it to another. We demonstrate

the end-to-end re-targeting flow on real-world open-source SoC designs (Sec-

tion 4.5).

We first describe the necessary background with a typical design scenario for an

engineer tasked with targeting their HDL code to several technologies, along with its

attendant problems (Section 4.2). In the rest of the chapter we show how to avoid this

scenario by using a unified abstract memory representation.

4.2 Background

In this section, we provide background on the problem domain through a moti-

vating example. Consider a scenario where a developer is implementing a core for a

System-on-a-Chip (SoC). Such a core may require a number of memory blocks for in-

structions, data, caches, etc. As a small but non-trivial example, we focus on a register

file—a memory block with 32 entries of 32-bit values.

In behavioral Verilog, it is straightforward to implement the register file as an array

of 32-bit registers (as regfile in the code below). The developer expresses reading and

writing to the register file using the familiar array notation. In our scenario, the target

architecture specifies RISC-style instructions which operate over two registers, so the

register file needs two read ports and one write port. This style of behavioral Verilog

90

A Memory Design Language for Automated Memory Mapping Chapter 4

suffices for simulation in, for example, the open-source simulator Verilator [87].

reg [31:0] regfile[31:0];

// Read logic

assign r0_data_o = regfile[r0_addr_r];

assign r1_data_o = regfile[r1_addr_r];

// Write logic

always @(posedge clk)

if (w_valid_i)

regfile[w_addr_i] <= w_data_i;

However, the developer then learns they need to deploy this core to a particular

FPGA. The FPGA only supports a particular kind of memory, a block RAM (BRAM).

Verilog does not have built-in support for BRAMs. Instead, the FPGA vendor provides

a BRAMmodule as an intellectual property (IP) library, and through adetailedmanual

documents how to interface with the module and instantiate it in Verilog code. The

developer then pores through the vendor manual and writes what they think is the

correct way to instantiate a BRAM for the register file in their design. For context, the

UltraScale Architecture Memory Resources manual from AMD/Xilinx is 139 pages in

length with 80 pages on BRAMs [102]. If the developer is “lucky” (read: likes to use a

GUI), the vendor may provide a configuration wizard to generate these wrappers, but

it still takes careful use and consultation with the vendor manual to choose the correct

settings and parameters. An example is given below:

bram_2r1w_wrapper #(

.DEPTH (32),

.ADDR_WIDTH (5),

.DATA_WIDTH (32)

) regfile (

.MEMCLK (MEMCLK), .RESET_N (RESET_N),

.CEA (CEA), .AA (AA),

.AB (AB), .RDWENA (RDWENA),

91

A Memory Design Language for Automated Memory Mapping Chapter 4

.CEB (CEB), .RDWENB (RDWENB),

.BWA (BWA), .DINA (DINA),

.DOUTA (DOUTA), .BWB (BWB),

.DINB (DINB), .DOUTB (DOUTB));

To support both theVerilator simulation andFPGAdeployment, the developer then

splits register file source code into two parts using ifdef blocks, shown as follows:

`ifdef VERILATOR

reg [31:0] regfile[31:0];

...

`endif

`ifdef UltraScale

bram_2r1w_wrapper #(...)

...

`endif

But the developer is not finished yet. Next they are told that they also need to

support an ASIC deployment. Again, Verilog does not explicitly support the kinds

of memory technologies used in ASIC designs, specifically SRAMs. This time, the

developer reaches for an open-source solution—the Basejump STL [83], which is an

open-source standard component library for common hardware components provid-

ing process-specific implementations for memory blocks in supported technologies.

After consulting the Basejump STL documentation, the developer adds a third ifdef

block to their register file implementation, instantiating yet another technology-specific

module with its own set of parameters and port mappings:

`ifdef VERILATOR

reg [31:0] regfile[31:0];

...

`endif

92

A Memory Design Language for Automated Memory Mapping Chapter 4

`ifdef UltraScale

bram_2r1w_wrapper #(...)

...

`endif

`ifdef ASIC

bsg_mem_2r1w_sync #(...)

regfile (.w_addr_i(w_addr_i), .w_data_i(w_data_i), ...)

`endif

Overall, this implementation is brittle in three dimensions. (1) The ifdef blocks

each support only one particular technology. If the code base needs to support an-

other FPGA device, the developer needs to add another ifdef to instantiate the BRAM

supported for that particular FPGA and decide how to differentiate between the dif-

ferent, sometimes overlapping macros they have introduced. (2) The implementation

here is specific to onememory block in the overall SoC design; there are generallymany

morememory blocks, eachwith their own particular semantics and configurations, for

which the developer needs to repeat this process over and over. (3) The implemen-

tation is brittle to design changes. If the architecture changes, e.g., to support more

complex instructions, the developer may need to update the register file to support

three read ports. This change requires updating all of the ifdef blocks for the register

file to reflect the change in port mapping. This issue arises with optimizations as well.

“Write-to-read forwarding” forwards the value of a write operation to the read port

if they share the same address which bypasses an unnecessary read operation. Some

memory technologies support this optimization and can enable it through a parame-

ter. Others may not support the optimization and the developer needs to implement

the logic manually.

Our solution alleviates the developer from this convoluted situation. In Elephant,

the developer only writes a single generic interface for each memory block that can

93

A Memory Design Language for Automated Memory Mapping Chapter 4

be automatically targeted to all of these technologies. Next, we present Elephant as a

language, its rewrite-driven semantics, and show how we can achieve a more robust

implementation.

4.3 Elephant for Automated Memory Technology Map-

ping

In this section, we present the HDL extension we call Elephant which defines a

rich memory abstraction for use in memory technology mapping. Because Elephant

is anHDL extension it is designed to be added to an existingHDL, and thuswe present

the language as a subset of an HDL, excluding any HDL features that are not directly

relevant to memory semantics. In this formal presentation, we give an abstract syntax

for Elephant which is agnostic to any particular HDL, but in Section 4.5.1 we describe

how we extend PyRTL with the memory abstraction defined here.

4.3.1 Elephant Grammar

Figure 4.2a presents the grammar for Elephant. The syntax only has constructs rel-

evant for the abstract memory representation. The top-level construct in Elephant is

a memory. A memory itself has a number of read ports, write ports, and options indi-

cating implementation-specific optimizations and configurations. ⟨update⟩ and ⟨expr⟩

terms only appear through lowering—that is, “elaborating”—a memory abstraction.

Figure 4.2b presents signatures for key constructs in Elephant. The ReadPort con-

struct and WritePort construct are tagged unions, with fields indicating each part of

the port: an enable signal (en), an address value (addr), a data value (as output for

ReadPort, and input for WritePort), and an optional mask for write data. Option types

94

A Memory Design Language for Automated Memory Mapping Chapter 4

⟨memory⟩ ::= Memory(⟨port⟩+,⟨option⟩+) | ⟨update⟩

⟨port⟩ ::= ReadPort(⟨var⟩,⟨var⟩,⟨var⟩) |WritePort(⟨var⟩,⟨var⟩,⟨var⟩,⟨var⟩)

⟨option⟩ ::= LatchLastRead |WriteReadForward | Sync

⟨update⟩ ::= ⟨update⟩ ; ⟨update⟩ | ⟨var⟩ := ⟨expr⟩ | ⟨var⟩[⟨var⟩] := ⟨expr⟩

| ⟨expr⟩ ? ⟨update⟩

⟨expr⟩ ::= Mux(⟨expr⟩,⟨expr⟩) | Demux(⟨expr⟩,⟨expr⟩) | { ⟨expr⟩+ }

| ⟨expr⟩ ∧ ⟨expr⟩ | ⟨expr⟩ ∨ ⟨expr⟩ | ¬⟨expr⟩ | ⟨var⟩[⟨var⟩]

(a)

In(n), Out(n), Reg(n) :: Bn, Option :: B1

ReadPort :: {en: In(1), addr: In(mr), data: Out(nr)}

WritePort :: {en: In(1), addr: In(mw), data: In(nw), mask: In(nw)?}

Memory :: [ReadPort] × [WritePort]? × [Option] → [xi: Reg(n) | i = 0..2m] | m = mr

= mw, n = nr = nw

Mux :: Bn × B2n → B1

Demux :: B1 × Bn → B2n

(b)

Figure 4.2: (a) The grammar for Elephant. m[a] represents addressing, either address-

ing a row from a memory, or addressing a particular bit from a variable. e ? x := y

indicates a guarded update, which only executes if e evaluates to 1. { a, b, c } rep-

resents concatenation of the values of expressions a, b, and c. (b) A selection of type

signatures for key constructs in Elephant. The base type is a bit-vector, indicated by

Bn. In, Out, and Reg are constructors for input and output ports, and registers. n and m

are natural numbers.

95

A Memory Design Language for Automated Memory Mapping Chapter 4

are indicated with ‘?’—for instance, a Memory does not require a WritePort (it can be

read only). Square brackets indicate an array (one or more)—for example, a Memory

can have multiple ReadPorts. The type signature for Memory contains two refinements

to ensure a well-typed memory: The outer refinement ensures that the address and

data fields for the read and write ports are the same size, m and n, respectively (m = mr

= mw, n = nr = nw). The refinement on the return value, the array of registers, asserts

that the number of registers is proportional to the address size ([xi: Reg(n) | i =

0..2m]).

Following the example in Section 4.2, we describe that same proposed register file

in Elephant:

r0: ReadPort :: {en: In(1), addr: In(5), data: Out(32)}

r1: ReadPort :: {en: In(1), addr: In(5), data: Out(32)}

w: WritePort :: {en: In(1), addr: In(5), data: In(32)}

rf := Memory([r0, r1], [w], [Sync])

This code expresses the register file as an abstract memory block with two read

ports and one write port, and the Sync option enabled indicating that reads to the

memory are synchronous. From this representation, we will show how Elephant

enables automated memory technology mapping, replacing the lines of Verilog and

ifdef blocks with a single Memory instance. The information encoded in the type sig-

natures for the memory, including its read and write ports, will become important for

elaboration, described next.

4.3.2 Elaboration in Elephant

Program execution in Elephant is different than a typical language. Rather than

evaluate data flowing from the input ports to the output ports, Elephant generates a
96

A Memory Design Language for Automated Memory Mapping Chapter 4

ri : ReadPort mem := Memory([r0, ..., rn], w⃗, o⃗)
i = 0, ..., n mem′ := Memory([r0, ..., rn−1], w⃗, o⃗)

mem = (mem′ ; rn.en ? rn.data := mem′[rn.addr])
ReadPort

memi = Mux(r.addr, x⃗[i])
r : ReadPort x⃗ :

−−→
Reg(m) i = 0, ...,m

mem[r.addr] = {mem0, ...,memm−1 }
ReadAddress

wi : WritePort mem := Memory(r⃗, [w0, ..., wn], o⃗)
i = 0, ..., n mem′ := Memory(r⃗, [w0, ..., wn−1], o⃗)

mem = (mem′ ; wn.en ? mem′[wn.addr] := wn.data)
WritePort

e := Demux(w.en, w.addr)
dj = e[j] ? xj[i] := w.data[i]

w : WritePort x⃗ :
−−→
Reg(m) i = 0, ...,m j = 0, ..., n

w.en ? mem[w.addr] := w.data = d0 ; ... ; dn−1

WriteAddress

s : B1 a : B1 b : B1

Mux(s, { a, b }) = (a ∧ ¬s) ∨ (b ∧ s)
Mux

s : Blog2n t : B1 a : Bn b : Bn

Mux({ s, t } , { a, b }) = Mux(t, { Mux(s, a), Mux(s, b) }
Mux2n

x : B1 s : B1

Demux(x, s) = { x ∧ ¬s, x ∧ s }
Demux

x : B1 s : Blog2n t : B1 { d0, d1 } := Demux(x, t)
Demux(x, { s, t }) = { Demux(d0, s), Demux(d1, s) }

Demux2n

w : WritePort(mask : In(n)) mem : Memory i = 0, ..., n
read = mem[w.addr] mi = Mux(w.mask[i], { read[i], w.data[i] })

w.en ? mem[w.addr] := w.data = w.en ? mem[w.addr] := {m0, ...,mn−1 }
WriteMask

Figure 4.3: The core elaboration rules for Elephant. A rule a = b means a term a

rewrites to an equivalent term b. For each rule, the bottom half defines the term rewrite

while the top half specifies conditions that must hold for the rewrite to occur.

97

A Memory Design Language for Automated Memory Mapping Chapter 4

description of the corresponding logic obtained from refining the abstract memory given

a particular configuration of ports and parameters. This pattern is common in HDLs

such as Chisel [103] and PyRTL [25] which also use this “elaboration through execu-

tion” strategy.

We formalize elaboration as rewrites over terms in Figure 4.3. The goal of elabo-

ration is to start from an abstract memory interface, and through successive rewrites,

refine the abstract memory into a logical implementation. Different technology tar-

gets dictate how to refine the abstract memory. Thus, the resulting implementation

may be expressed at varying levels—from behavioral all the way to gate-level logic. In

this way, Elephant is a multi-level representation; it can express both abstract mem-

ory blocks and low-level logic in the same language. The elaboration rules make use

of this multi-level representation. The core rules assume full elaboration to gate-level

logic (as for simulation); Section 4.3.3 will discuss how to target different technologies.

Next, we outline the core elaboration rules for Elephant, starting with read logic.

Read Logic

The core rules for read logic are ReadPort and ReadAddress in Figure 4.3. The

ReadPort rule pulls an abstract read port out of a memory, and expresses it behav-

iorally — e.g., en ? data := mem[addr]. The ReadAddress rule takes this one step

further by expanding a behavioral read (mem[addr]) into the underlying logic, gener-

ating a multiplexer tree which selects the correct register according to the address.

We continue with the register file example, showing how to apply the rewrites for

the example following the general rules. Considering the two read ports for the register

file, the goal for rewriting is to produce two ⟨update⟩ statements for each of the output

ports in r0 and r1. Thus, through two applications of ReadPort, we obtain:

98

A Memory Design Language for Automated Memory Mapping Chapter 4

rf = r0.en ? r0.data := rf'[r0.addr] ;

r1.en ? r1.data := rf'[r1.addr]

The resulting code expresses one level of refinement from the abstract memory to

a statement explicitly defining an output port in terms of addressing the memory as a

whole. We can continue to lower the read logic, next rewriting thememory addressing

logic for the read port via the ReadAddress rule. Consider the expression rf[r0.addr]:

Mux : B5 × B32 → B1

x0, . . ., x31 : Reg(32)

rf[r0.addr] = { Mux(r0.addr, x0[0], . . ., x31[0]),

Mux(r0.addr, x0[1], . . ., x31[1]), . . .,

Mux(r0.addr, x0[31], . . ., x31[31]) }

The semantics “hidden” in the left-hand side expand into the multiplexing logic on

the right. Internally, the memory block is a matrix of one-bit registers. The multiplex-

ing logic uses the address to select to corresponding bit of the addressed row. That is,

it generates the concatenation of m one-bit values which make up the full n-bit row of

the selected data in memory.

Rules Mux2n andMux then continually decompose the multiplexing logic. That is,

a 2n-to-1multiplexer can be decomposed into two n-to-1multiplexerswhich feed into a

2-to-1multiplexer (viaMux2n). This decomposition continues until it reaches the base

case of a 2-to-1multiplexer (viaMux), expressing the logic directly using Boolean logic

gates.

Elaborating these rules over the full Memory lowers the memory block to purely

logic gates and one-bit registers—a gate-level netlist. Note that the multiplexer trees

for the read logic are a generic representation. Some technologies will “specialize”
99

A Memory Design Language for Automated Memory Mapping Chapter 4

read logic forgoing the generic multiplexer tree. For example, an SRAMwill select the

read output via charge outputting onto the bitlines, selecting a single entry all at once.

Next, we turn to the write logic.

Write Logic

Elaboration rules for write logic proceed similarly to read logic but moving in the

“opposite” direction. The core rules for write logic are WritePort and WriteAddress

in Figure 4.3. The WritePort rule pulls an abstract write port out of a memory, and

expresses it behaviorally—en ? mem[addr] := data. The correspondingWriteAddress

rule expands a behavioral write into the underlying logic; this time generating demul-

tiplexer logic which enables writing to the correct register according to the address.

Continuing the register file example, rf, the write logic for its single write port

expands to the following:

rf := Memory(_, [w], _)

rf = _ ; w.en ? rf'[w.addr] := w.data

Not shown are the previous applications of the ReadPort rule from Section 4.3.2.

The pattern _ ; s is a shorthand for appending s to the list of update statements.

Similar to the rules formultiplexers, theDemux2n rule rewrites a 1-to-2n demultiplexer

into two 1-to-n demultiplexers preceded by a 1-to-2 demultiplexer. The base case is a

1-to-2 demultiplexer, rewritten to logic gates via the Demux rule.

Data Masks

Write ports optionally accept masks which apply a given input mask to the write

data before writing. The WriteMask rule in Figure 4.3 presents an elaboration for bit

masks but masks of larger granularity can be supported too. The mask operates on
100

A Memory Design Language for Automated Memory Mapping Chapter 4

the data input of the write port. The lowering logic generates a series of multiplexers

which selects the ith bit of the incoming write data only if the ith bit of the mask is high.

Options

Elaboration rules for read logic, write logic, andmasks comprise the core semantics

for Elephant. The remaining rules are the options set in the memory interface. The

options we present here are representative but not exhaustive; memories in Elephant

can support more options by extending the set of elaboration rules.

Here, we explain Sync,WriteReadForward, and LatchLastRead. The Sync option

models a synchronous memory, meaning the read data is not available until the next

cycle. When lowering the design, this option requires adding a register (async below)

for each read port to store the input read address, as shown in the following elaboration

rule:
r : ReadPort r.addr : Bn async : Reg(n)

mem : Memory(Sync) s = (r.en ? async := r.addr)

r.en ? r.data := mem[r.addr] = s ; r.data := mem[async]

The option WriteReadForward is an optimization that forwards a written value to

the read port if they are accessing the same address. Because writes are applied to the

memory at the next clock edge, a read to that address will have to wait one cycle after

the write takes effect. This optimization makes the read value available earlier instead

of waiting for the write to complete. We express WriteReadForward in the following

rule, the main additional logic is the multiplexer that checks if the read address and

write address are the same:
r : ReadPort w : WritePort

mem : Memory(WriteReadForward)
r.data = Mux(r.addr = w.addr, {mem[r.addr], w.data })

The last option LatchLastRead saves the enable signal and last read data in separate

registers. The output port takes the last read data until another read is enabled. We

101

A Memory Design Language for Automated Memory Mapping Chapter 4

express the rule as follows, where ellr and dllr are the new registers for the enable and

last read data, respectively:

r : ReadPort mem : Memory(LatchLastRead)
ellr : Reg(1) dllr : Reg(n) r.data : Bn

s = (ellr := r.en ; dllr := Mux(ellr, {mem[r.addr], dllr }))
r.data := mem[r.addr] = s ; r.data := dllr

These cover the three options that configure an abstract memory. This set can be

extended by adding a new option and defining the corresponding rewrites.

4.3.3 Technology Targeting with Constraints

The “backend” of Elephant consists of passes that target particular technologies.

Through elaboration, Elephant propagates information from read andwrite ports into

a given abstract memory interface, along with timing-related features (i.e., options).

Recall that there are three target platforms: simulation, ASIC, and FPGA, but multiple

technologies within each platform. How much elaboration needs to happen depends

on a given technology. Some technologies, for example, memories in the Basejump

STL, bear a close resemblance to the abstract memory interface in Elephant and can be

targetedwithminimal elaboration. The general rewrite rules presented in Section 4.3.2

handle simulation at different levels of abstraction from behavioral all the way to gate-

level netlist, which level depends on the target platform. Given the comprehensive

elaboration rules, many different backends can be targeted.

The Elephant backend generates templated descriptions for a set of supported

memory technologies (see Section 4.5.1 for the specific technologies). Further, due to

the refinement-style elaboration and algebraic rewrite rules, we can develop backend

passes that incorporate technology-specific constraints, enablingmemorymapping for

more complex scenarios. For example, a developermay need tomap a 2r2wmemory to

an FPGA that only supports dual-port BRAMs (2rw), a non-trivial mapping problem

102

A Memory Design Language for Automated Memory Mapping Chapter 4

that may take extensive developer effort.

We developed a technique for mapping abstract memories in Elephant according

to technology constraints. The input of this algorithm contains two parts: a high-

level memory and a set of available memory technologies with their constraints. The

technology library describes the specifications of each target memory, including data

width, number of ports, different features like (a)synchronous read, latch last read,

etc., and a user-defined cost. The output is a module with certain instantiations of the

target memories and wrappers over them to meet the high-level memory interface.

Algorithm 3 describes how memory mapping works in two main phases. First, it

applies a dynamic programming algorithm to compute the feasible port fitting plan

for every memory with i read ports, j write ports, and k read-write ports given the

technology library. The second phase is a greedy algorithm that deals with data width

and features. It selects memories from the technology library that have enough capac-

ity to hold the data and meet the features. It prefers memories with lower cost and

those already have the required features, otherwise it wraps the memories with addi-

tional logic, e.g., a forwarding unit will be added when the underlying memory does

not support it.

Let’s consider an example of mapping an abstract memory with 2 read ports and

2 write ports to a technology library with only one type of BRAM which has 2 read-

write ports and costs 1, regardless of their capacity and features. To compute a port

fitting plan with minimal cost, the algorithm initializes a 3-dimensional array f(i, j, k),

where i, j, and k are the number of read, write, and read-write ports respectively, to

+∞. First, it sets f(0, 0, 2) = 1 since the target technology has 2 read-write ports. Then

it starts from f(2, 2, 0) and recursively searches for the plans. In order to implement

f(2, 2, 0), it uses two f(3, 1, 0) by splitting the write ports. For each f(3, 1, 0), it again

uses three f(1, 1, 0) by splitting the read ports, where f(1, 1, 0) = f(0, 0, 2). Finally,
103

A Memory Design Language for Automated Memory Mapping Chapter 4

we have f(2, 2, 0) = 6, which means we need to use 6 2rw BRAMs to implement this

memory.

Algorithm 3Dynamic programming algorithm formemorymappingwith technology

constraints.
1: procedureMemoryMap(abstract_mem, tech_lib)

2: Initialize 3D DP table dp[r][w][rw]with cost +∞

3: Populate dp entries based on available physical memories in tech_lib

4: for all valid (r, w, rw) configurations do

5: for each possible port split of read ports do

6: Update dp[r][w][rw] using minimum cost of split subproblems

7: for each possible casting of read or write to readwrite ports do

8: Update dp[r][w][rw] based on transformed port configuration

9: for each cast of readwrite to separate read and write ports do

10: Update final dp entry accordingly

11: return Minimum cost plan in dp[nr][nw][nrw]

4.4 Memory Decompilation

In this section we present our memory decompilation technique with the goal of

lifting memories in a gate-level netlist up to abstract memories in Elephant. Since

netlists are a common artifact for distributing IP, memory decompilation helps designs

written in other HDLs take advantage of Elephant’s automated memory technology

mapping capabilities. The technique we present starts from a gate-level netlist with

single-bit registers (also called D-flip flops, or DFFs). We split the technique into four

phases, each driven by rewrite rules in Elephant: (1) group registers by common en-

able signals; (2) lift write logic from gates to demultiplexers to behavioral writes; (3)
104

A Memory Design Language for Automated Memory Mapping Chapter 4

lift read logic from gates to multiplexers to behavioral reads; (4) lift behavioral reads

and writes into an abstract memory. The key insight is that we decompile memories

by using the same elaboration rules described in Section 4.3, only we flip the direction

of the rewrite from a⇝ b to a ⇝b.

4.4.1 Register Enable Signals

Because Elephant is a multi-level representation, we can use it to express designs

in terms of gate-level logic. This allows us to translate netlists directly into Elephant

and then rewrite the Elephant code into higher-level abstractions according to the (re-

versed) elaboration rules. The first step is to group single-bit registers intowider regis-

ters. Sets of multi-bit registers of the same width will serve as candidates for memory

decompilation in the later phases. To cut down on the search space of all DFFs in a

netlist, we use the heuristic of only considering DFFs with enable pins. This heuristic

is not required for our technique to work, it is simply a practical optimization; even if

DFFs with enable pins are not specifically used in a netlist, there will normally be some

kind of logic which enables reading and writing to registers inside of a memory block

as a power saving mechanism. In Elephant, we represent a DFF with an enable pin as

q := e ? d, where e is the enable and d is the incoming data. Then, we group registers

by common enable signals through a basic algebraic rewrite which distributes enables

over register terms in Elephant:

e, d0, d1 : B1 q0, q1 : Reg(1)

e ? q0 := d0 ; e ? q1 := d1 = e ? (q0 := d0 ; q1 := d1)
EnableDist

Consider a small example for a memory where the address is only 2-bits and the

data is 2-bits, so there are four possible entries in the memory block. The wires for the

data signal are d0 and d1. The eight 1-bit registers are x00, x01, x10, x11, x20, x21, x30,

and x31, with enable signals x0_en, x1_en, x2_en, and x3_en. We use meaningful vari-
105

A Memory Design Language for Automated Memory Mapping Chapter 4

able identifiers only for the ease of understanding in the presentation of the example;

such naming information is lost in the netlist. The individual registers definitions are

below followed by the application of the EnableDist rule:

x0_en ? x00 := d0 ; x0_en ? x01 := d1 ;

x1_en ? x10 := d0 ; x1_en ? x11 := d1 ;

x2_en ? x20 := d0 ; x2_en ? x21 := d1 ;

x3_en ? x30 := d0 ; x3_en ? x31 := d1

⇝

x0_en ? (x00 := d0 ; x01 := d1) ;

x1_en ? (x10 := d0 ; x11 := d1) ;

x2_en ? (x20 := d0 ; x21 := d1) ;

x3_en ? (x30 := d0 ; x31 := d1)

4.4.2 Decompiling Write Logic

After grouping registers through common enables, we show how to apply rewrites

to recover memory write logic. This logic follows exactly the rules for write logic

from Figure 4.3, except in the opposite direction, from logic gates, to demultiplexers,

up to high-level memory addressing logic—specifically, rules Demux, Demux2n, and

WriteAddress. Here, through an example, we show how to go from a low-level Ele-

phant program and rewrite it step-by-step into an equivalent program with the write

logic represented in high-level Elephant. Following the example from Section 4.4.1,

we consider the definitions of the register enable signals below:

x0_en := en ∧ (¬a0 ∧ ¬a1) ; x1_en := en ∧ (a0 ∧ ¬a1) ;

x2_en := en ∧ (¬a0 ∧ a1) ; x3_en := en ∧ (a0 ∧ a1) ;

The write enable signal for the memory write port is en. The wires for the address
106

A Memory Design Language for Automated Memory Mapping Chapter 4

signal are a0 and a1. The conjuncts en ∧ ¬a0 and en ∧ a0 form a 1-to-2 demultiplexer,

which, via the Demux rule, gets rewritten into:

{ t0, t1 } := Demux(en, a0) ; [Demux]

x0_en := t0 ∧ ¬a1 ;

x1_en := t1 ∧ ¬a1 ;

x2_en := t0 ∧ a1 ;

x3_en := t1 ∧ a1 ;

After this rewrite, two more demultiplexers form using the two outputs from the

first demultiplexer (t0 and t1) as inputs:

{ t0, t1 } := Demux(en, a0) ;

{ x0_en, x2_en } := Demux(t0, a1) ; [Demux]

{ x1_en, x3_en } := Demux(t1, a1) ; [Demux]

Finally, this step matches rule Demux2n for a 1-to-4 demultiplexer based on the en-

able signal on the address signal: { x0_en, x1_en, x2_en, x3_en } := Demux(en, {a0,

a1}). This Demux combined with all of the guarded update statements for register x00,

. . ., x31 can then be merged into a single memory write statement via WriteAddress:

en ? mem[{a0, a1}] := {d0, d1}.

4.4.3 Decompiling Read Logic

Similar to the write logic, recovering read logic follows the reversed elaboration

rules from Figure 4.3, specifically rules Mux, Mux2n, and ReadAddress.

For each read port, we follow a multiplexer tree stemming from the registers until

it stops at a series of n wires, where n is the width of each register. We can follow the

same example but for read logic, where rd0 and rd1 are output signals for the data
107

A Memory Design Language for Automated Memory Mapping Chapter 4

value of the read port:

rd0 := (((x00 ∧ ¬a0) ∨ (x10 ∧ a0)) ∧ ¬a1) ∨

(((x20 ∧ ¬a0) ∨ (x30 ∧ a0)) ∧ a1)

⇝ [Mux]

rd0 := (Mux(a0, {x00, x10}) ∧ ¬a1) ∨

(Mux(a0, {x20, x30}) ∧ a1)

⇝ [Mux2n]

rd0 := Mux({a0, a1}, {x00, x10, x20, x30})

Following the same rewrites for rd1 (not shown) produces a corresponding multi-

plexer, selecting bit 1 instead of bit 0: rd1 := Mux({a0, a1}, {x01, x11, x21, x31}).

The concatenation of these two expressions generates a valid memory read via the

ReadAddress rule: {rd0, rd1} := mem[{a0, a1}]. If there is a write mask, it will be

rewritten in this phase, following the opposite direction of the WriteMask rule.

4.4.4 Decompiling to an Abstract Memory

With all gate-level logic rewritten into behavioral reads and writes, the final step

pulls this logic into distinct read and write ports in an abstract memory using the re-

verse direction of the ReadPort andWritePort rules. In this way, we reverse the elab-

oration rules to deduce instantiations of ReadPort and WritePort, lifting up to a full

Memory in Elephant. We demonstrate these steps on the small example, instantiating a

single abstract memory interface with a read port and write port:

{rd0, rd1} := mem[{a0, a1}]

en ? mem[{a0, a1}] := {d0, d1}

⇝ [ReadPort,WritePort]

rp := ReadPort(1, {a0, a1}, {rd0, rd1})

108

A Memory Design Language for Automated Memory Mapping Chapter 4

wp := WritePort(en, {a0, a1}, {d0, d1})

mem := Memory([rp], [wp])

Identifying options such as LatchLastRead andWriteReadForward also follow the

same method—running the elaboration rules from Section 4.3.2 in reverse based on

the gate-level logic, with the result collapsing the logic into an option in the memory

interface.

4.4.5 Memory Decompilation via Equality Saturation

The previous section presents an ideal scenario to decompile memories from gate-

level netlists. In practice, however, the reversed elaboration rules by themselves are in-

sufficient to decompile memories in arbitrary netlists generated from other languages

and hardware synthesis tools. The reason is that hardware synthesis and logic opti-

mization obscure the original structure of the high-level memory block. Additional

transformations may be necessary to reveal the structure of a memory in the low-level

gates of the netlist, although it is not always obvious which sequence of rewrites will

do so.

Solving this problem requires searching over a large space of possible transfor-

mations. Our memory decompilation technique overcomes this problem by using

equality saturation [104], a non-destructive term rewriting technique which uses the

e-graph [105] data structure to group terms into equivalence classes. Instead of ap-

plying a fixed sequence of transformations over a program, equality saturation applies

all possible rewrites over the whole program in a convergent process, extracting the

“best” term according to a given cost function.

There are three challenges unique to the hardware domain that hinder equality

saturation from performing efficiently over hardware designs: (1) the massive scale

109

A Memory Design Language for Automated Memory Mapping Chapter 4

of netlists; (2) working between multiple levels of abstraction; (3) aggressive opti-

mizations that obscure the structure of low-level logic. To address these challenges,

we developed an equality saturation technique specially tailored to overcome these

three challenges from the hardware domain: scoped rewrites to scale to million-gate de-

signs, phased rewrites via subsumption to handle multi-level abstraction recovery, and

anti-unification to repair logic obscured by aggressive optimizations.

Scoped rewrites Conventional equality saturation globally applies all rewrites across

the entire e-graph. For a task such as recovering read port logic, the decompiler will

apply the rule for rewriting combinational logic gates into 2-to-1 multiplexers (Mux

in Figure 4.3). However, for a netlist with millions of gates, it is possible that many of

the rewritten multiplexers have no relation to a memory’s read port logic.

The insightwith “scoped” rewrites is that some rewrites are only profitable in given

contexts, and so equality saturation will only apply those rewrites on certain parts of

the e-graph. For the read port logic example, the only relevant multiplexers to recover

are those whose inputs are derived from a grouped register. Then, successive rewrites

are only applied “outward” from the outputs of the rewritten multiplexers.

Phased rewrites via subsumption Due to the multilevel representation of memories

in Elephant, memory decompilation can be split into distinct phases. That is, there are

some sets of rewrites that should be saturated before running others. It is not always

profitable to run all rewrites over the netlist at once, for example, recoveringwrite ports

before registers are even grouped together. So, as an optimization, instead of applying

all sets of rewrite rules at the same time, the memory decompiler has four main phases

with their associated rules (from Figure 4.3):

1. Register grouping: EnableDist.
110

A Memory Design Language for Automated Memory Mapping Chapter 4

2. Read port logic: Mux, Mux2n, ReadAddress.

3. Write port logic: Demux, Demux2n, WriteAddress.

4. Memory extraction: ReadPort, WritePort.

Subsumption is one keymechanism for implementing phased rewrites. To subsume

in the e-graphmeans to prevent an entry in an e-class frombeing extracted (as opposed

to deleting it entirely). Recall the register grouping rule:

e, d0, d1 : B1 q0, q1 : Reg(1)

e ? q0 := d0 ; e ? q1 := d1 = e ? (q0 := d0 ; q1 := d1)
EnableDist

Trivial saturation of EnableDist will result in a combinatorial explosion of the num-

ber of possible register groups. To avoid this blow up, the equality saturation tech-

nique groups as many registers as possible in a single round, then subsumes grouped

registers (preventing them from being extracted). Subsumption is similarly used in

other phases. For example, during multiplexer tree reduction, the decompiler sub-

sumes smaller multiplexers after rewriting them into a single larger multiplexer.

Logic repair via anti-unification Unlike read ports, write ports are not as straight-

forward to extract for two reasons. (1) Theoretically, a write port can be decomposed

into a demultiplexer tree. However, a demultiplexer’s outputs are loosely coupled and

the internal logic is often twisted with other unrelated logic in aggressively optimized

netlists, which cannot be recovered by standard equality saturation. (2) Even in the

most ideal case, the demultiplexer tree can be broken with missing branches. For ex-

ample, RISC-V, ARMv8-A, and MIPS processor register files have a “zero” register,

which is never written to, resulting in certain paths of the demultiplexer tree being

permanently unused, thus effectively pruned. Such an aggressive logic optimization

111

A Memory Design Language for Automated Memory Mapping Chapter 4

in the write logic may reduce a subcircuit to a single wire, making it expensive to spec-

ulatively transform that wire back into arbitrary logic.

This problem comes down to profitably “undoing” an optimization that reveals

some higher-level structure for the sake of decompilation. However, standard equality

saturation does not deal particularly well with rewrites that dramatically increase the

size of the e-graph. Previous work in other domains develop customizations on top of

equality saturation to handle these scenarios. For example, work in decompiling 3D

CADprogramsdeveloped inverse transformationswhich speculatively add equivalences

to the e-graph that expose latent structure [99].

We develop an anti-unification technique for netlists that repairs the missing write

logic. Anti-unification is computing the most concrete pattern that matches two given

terms, and has been used in equality saturation in other domains [106]. The idea is to

anti-unify the optimized logic with the “ideal” write logic to recover the logic that was

optimized away. We do this by introducing a reverse write port into the write logic,

constructed from the register enable signals and the write data signal. The reverse

write port keeps the equivalence of the original netlist. Then, after another saturation

pass, much of the logic is simplified away, leaving the difference between the “ideal”

write port and netlist’s. For an unoptimized netlist, the reversewrite portwill be totally

eliminated.

4.5 Evaluation

In this section, we evaluate Elephant and our decompilation-basedmemory lifting

technique over a suite of representative hardware design benchmarks. Through our

evaluation, we seek to answer the following questions:

RQ 1. Can our abstract memory representation target multiple technologies across sim-
112

A Memory Design Language for Automated Memory Mapping Chapter 4

Memory Elaboration

Decompilation

Eʟᴇᴘʜᴀɴᴛ
BSG

OpenRAM
Synth BRAM

PyRTL Tcl

Backend

Netlist

Xilinx

Figure 4.4: An illustration of the Elephant tool flow. A user inputs either a memory

design expressed in Elephant, or a netlist. After elaboration, Elephant targets a par-

ticular backend. The backends are shaded by technology platform. Boxes with square

grids are ASIC backends; boxes with cross hatching are FPGA backends; and boxes

with wavy lines are simulation backends.

ulation, ASIC, and FPGA platforms?

RQ 2. Can our decompilation-based memory lifting technique identify memories that

state-of-the-art memory inference cannot?

RQ 3. Can our composed techniques enable technology re-targeting on a real-world

open-source SoC design, starting from a design mapped to one technology and

re-targeting it to another?

4.5.1 Implementation

Our implementation spans two parts: (1) the Elephant language itself, and (2) the

memory decompiler. Figure 4.4 illustrates the overall tool flow where a user inputs

a memory design expressed in Elephant. For designs coming from other sources,

the user inputs a netlist, which gets passed into the decompilation-based memory-

113

A Memory Design Language for Automated Memory Mapping Chapter 4

inference flow, lifting the registers in the netlist to memory blocks in Elephant. After

elaboration, Elephant targets a particular backend. We target five backends for three

different technology platforms: Basejump STL (BSG) andOpenRAM forASIC; Vivado

Tcl scripts and synthesizable BRAMs for FPGA; and PyRTL for simulation. Currently,

the ASIC and FPGA backends are implemented via templating, whereas the PyRTL

simulation flow follows the core elaboration rules for Elephant.

To evaluate Elephant we need to realize it in a concrete HDL, so we implement

Elephant as an extension to the Python-based HDL PyRTL. We specify interfaces for

ReadPort, WritePort, and Memory, following the signatures given in Figure 4.2b. We

implement the rewrite-driven lowering passes following the rules in Section 4.3.2.

To support additional backends, there are two required pieces. The first, and most

basic, is a “template” for the specificmemory technology; either instantiating themod-

ule inHDL code, or generating a script such as forVivadoTcl orOpenRAM.Then, there

needs to be a mapping from the abstract memory interface to the fill in the template—

for example, mapping data and address sizes and port inputs and outputs. Second,

for mapping scenarios where the memory cannot be directly mapped to the specified

technology, constraints meta-data is required. The constraints can be derived readily

from vendormanuals. The following is an example ofmeta-data for a dual-port BRAM

for a Xilinx FPGA:

"xilinx": [

{

"name": "xilinx_bram_2rw",

"description": "7-Series Dual-Port BRAM",

"cost-per-bit": 3

"width": 36,

"height": 1024,

114

A Memory Design Language for Automated Memory Mapping Chapter 4

"read_ports": 0,

"write_ports": 0,

"read_write_ports": 2,

"features": ["WriteReadForward", "Sync"]

},

As described in Section 4.4.5, we also design a bespoke equality saturation tech-

nique for memory decompilation. In a departure from conventional equality satura-

tion, we implement this technique entirely in SQL (sqlite3 in Python). The relational

database approach lends itself well to representing netlists. Equality saturation frame-

works are AST-based and generally do not support cycles, whereas netlists do not re-

semble ASTs and due to registers, contain cycles. The customizations we added to the

equality saturation technique—subsumption, “scoped” rewrites, and anti-unification—

were easily implemented as SQL expressions.

4.5.2 Micro-Benchmark Experiments

WeanswerRQ1 andRQ2 through a series ofmicro-benchmark experiments demon-

strating Elephant’s support for automatedmemory technologymapping andmemory

inference via decompilation.

Memory design in Elephant

To answer RQ 1, we port a five-stage RISC-V processor, originally implemented

in PyRTL, to use memories in Elephant. The processor has three memory blocks: a

register file, an instruction memory, and a data memory with a write mask.

Specifying thememories in Elephant, we shrink thememory implementation from

130 lines of code to 3 lines of code, one line for each of the three memory interfaces. Be-

115

A Memory Design Language for Automated Memory Mapping Chapter 4

dmem = MemBlock(bitwidth=32, addrwidth=32)

rdata = dmem[addr]

with conditional_assignment:

with mask_mode == MaskMode.BYTE:

with offset == 0:

to_write |= wdata[:8].zero_extended(len(rdata)) | (~(Const("32'hff")) & rdata)

with offset == 1:

to_write |= concat(wdata[0:8],

Const("8'h0")).zero_extended(len(rdata)) | (~(Const("32'hff00")) & rdata)

with offset == 2:

to_write |= concat(wdata[0:8],

Const("16'h0")).zero_extended(len(rdata)) | (~(Const("32'hff0000")) & rdata)

with otherwise:

to_write |= concat(wdata[0:8],

Const("24'h0")).zero_extended(len(rdata)) | (~(Const("32'hff000000")) & rdata)

with mask_mode == MaskMode.SHORT:

with offset == 0:

to_write |= wdata[:16].zero_extended(len(rdata)) | (~(Const("32'hffff")) & rdata)

with offset == 2:

to_write |= concat(wdata[0:16], Const("16'h0")) | (~(Const("32'hffff0000")) & rdata)

with otherwise:

with offset == 0:

to_write |= wdata

with otherwise:

to_write |= rdata

dmem[addr] <<= MemBlock.EnabledWrite(to_write, enable)

Figure 4.5: Original PyRTL implementation of the datamemory, includingwritemask-

ing logic, for a RISC-V core.

116

A Memory Design Language for Automated Memory Mapping Chapter 4

cause PyRTL memory blocks do not natively support write masks, the original design

manually implemented the masking logic. Of note is the original implementation of

the data memory and write masking logic, shown in Figure 4.5. We can express this

same logic in one line of Elephant:

dmem = Elephant.Memory([ReadPort(addr, rdata)], [WritePort(addr, wdata, mask)])

Porting the design to Elephant also comes with the added benefit of automati-

cally targeting four additional backends besides simulation. Two backends, for the

Basejump STL and synthesizable BRAMs, directly generate module instantiations in

Verilog. The other two backends, Vivado Tcl and OpenRAM, generate configurations

which themselves must be processed in their respective memory compiler. Table 4.1

shows that these backends generate validmemory configurations that successfully tar-

get the given technologies. We validate the configurations by running them through

the appropriate toolchain (depending on the backend), and check that the memory

mapped correctly to the technology.

Decompilation-based memory inference

To answer RQ 2, we compare our decompilation-based memory lifting technique

against state-of-the-art memory inference in Yosys and a state-of-the-art proprietary

synthesis toolchain. Note that the comparison to memory inference in Yosys and the

proprietary tool is not completely one-to-one because these techniques work through

syntactic pattern matching in HDL code, whereas our technique works at the netlist

level. Nonetheless, we report ifmemory inference from these toolsworks over the orig-

inal HDL code that generated the netlists we run through ourmemory decompiler. We

consider a set of six micro-benchmarks coming from netlists synthesized from open-

117

A Memory Design Language for Automated Memory Mapping Chapter 4

Table 4.1: Memory mapping validation tests from Elephant across a range of port

configurations (1rw, 1r1w, and 2rw) and memory sizes, targeting the Vivado Tcl and

OpenRAM backends. The port notation ‘1r1w’ indicates a memory with 1 distinct

read andwrite port, whereas ‘1rw’ indicates 1 port which can either read or write (but

not at the same time). ✓Tcl stands for validated mapping for the Vivado Tcl backend.

✓OpenRAM stands for validated mapping for the OpenRAM backend.

Memory Size 1rw 1r1w 2rw

32 × 16 ✓Tcl ,✓OpenRAM ✓Tcl , ✓OpenRAM ✓Tcl , ✓OpenRAM

32 × 32 ✓Tcl ,✓OpenRAM ✓Tcl , ✓OpenRAM ✓Tcl , ✓OpenRAM

32 × 64 ✓Tcl ,✓OpenRAM ✓Tcl , ✓OpenRAM ✓Tcl , ✓OpenRAM

32 ×128 ✓Tcl ,✓OpenRAM ✓Tcl , ✓OpenRAM ✓Tcl , ✓OpenRAM

Table 4.2: Memory decompilation results comparing against memory inference in

Yosys and a state-of-the-art proprietary synthesis toolchain.

Design
Gates

(thousands)
Memory

Time

(seconds)

Yosys

inferred?

Proprietary

inferred?

bsg_cache 92 k 1rw: (8 × 256) ×8 3 s ∅ ∅

bsg_fifo 34 k 1r1w: (64 × 256) 0.7 s ∅ ✓

bsg_fifo 527 k 1r1w: (512 × 512) 23 s ∅ ✓

nerv 8 k 2r1w: (32 × 32) 0.1 s ✓ ✓

pico 10 k 2r1w: (32 × 32) 0.1 s ✓ ✓

sparc_ffu 27 k 1rw: (78 × 128) 0.4 s ✓ ∅

source hardware design suites such as OPDB [107] and the Basejump STL [83]. The

selection of micro-benchmarks shows the range of memories our technique decom-

piles, as they are deployed in a variety of designs from caches to cores.

Table 4.2 presents the results for memory decompilation in our technique versus

memory inference from Yosys and a state-of-the-art proprietary toolchain. Notewor-

118

A Memory Design Language for Automated Memory Mapping Chapter 4

thy are the bsg_cache, bsg_fifo, and sparc_ffu designs. Here we successfully iden-

tify memories where either Yosys or the proprietary synthesis tool, or both, did not.

Because the state of the art infers memories through syntactic pattern matching, mem-

ory inference is sensitive to the implementation. Memory decompilation, by contrast,

works on the structure of the netlist.

4.5.3 Large-Scale Case Studies

To answer RQ 3, we show howElephant plusmemory decompilation enables tech-

nology re-targeting on real-world open-source SoCdesignswithmanymemory blocks.

We consider three larger case studies from OPDB with multiple expected memory

blocks. Table 4.3 presents the memory decompilation and re-targeting results. These

results demonstrate how the memory decompilation technique scales to large designs,

with the L2 cache totaling 1.5 million gates. Using the original source code as a ref-

erence, the first three decompiled memory blocks for the L2 cache correspond to the

port configurations and dimensions of the data, tag, and state memory blocks.

Next, we consider BlackParrot, an open-source RISC-V multicore SoC [108]. Ta-

ble 4.4 presents the results from decompiling an entire BlackParrot core, totaling 11.8

million gates. Memory decompilation took 373 seconds, and identified 92 distinct

memory blocks. It is noteworthy that memory decompilation successfully identifies

all expected memory blocks in the netlist.

The BlackParrot core itself is split between a front end and back end (although in

the netlist, there is no such distinction). Memories in the front end include a BHT

(Branch History Table), a BTB (Branch Target Buffer), RAS (Return Address Stack),

and 3 smaller queues as part of the PC generation module, as well as 3 memories that

make up the instruction cache. Memories in the back end include an integer register

119

A Memory Design Language for Automated Memory Mapping Chapter 4

Table 4.3: Large-scale case studies from OPDB [107]. The benchmarks are an L1.5

cache, an L2 cache, and entire SPARC core. Since the benchmarks contained multiple

memory blocks each, the table reports them separately in the “Decompiled” column.

The decompilation times are totals for each module including all decompiled memo-

ries. The table marks ✓Tcl or ✓OpenRAM to indicate successful re-targeting to Vivado

Tcl or OpenRAM, respectively.

Design Gates Decompiled Time (s) Re-targeted

OPDB l1.5

cache
242 k

1r1w: (158 × 512)

1r1w: (116 × 128)

1r1w: (8 × 128)

1r1w: (8 × 128)

1r1w: (16 × 4)

10 s ✓Tcl ,✓OpenRAM

OPDB l2

cache
1.5 m

1r1w: (144 × 4096)

2r1w: (170 × 256)

1r1w: (64 × 16)

1r1w: (16 × 4)

109 s ✓Tcl ,✓OpenRAM

SPARC core 769 k

1r1w: (544 × 256)

1r1w: (576 × 128)

1r1w: (120 × 128)

1r1w: (78 × 128)

1r1w: (151 × 32)

48 s ✓Tcl , ✓OpenRAM

file, a floating-point register file, and 3 memories as part of the data cache. The data

memory block that is part of the data cache is decompiled as 64memories of size 512×8,

due to the original memory using a byte mask.

120

A Memory Design Language for Automated Memory Mapping Chapter 4

Table 4.4: BlackParrot memory decompilation results. The “Corresponding Modules”

column maps the decompiled memories to a memory blocks in the source code based

on the dimensions and portedness.

Decompiled Memories Corresponding Modules

32×14, 64×184, 512×64 (×8) Instruction Cache (data, tag, stat)

64×15, 64×184, 512×8 (×64) Data Cache (data, tag, stat)

512×8, 64×50, 16×43 BHT, BTB, RAS

32×66 (2r1w, 3r1w) Integer and Floating Point Register Files

8×80, 8×174, 4×114 Preissue FIFO, Issue queue, Cmd queue

32×20 (×3), 32×67, 8×15 (×3), 4×10 Uncatergorized

Core Size: 11.8 million gates Time: 373 seconds

4.6 Related Work

Due to the “forward” and “backward” nature of the memory mapping and re-

targeting problem, our work touches on past research in hardware design and reverse

engineering.

4.6.1 Hardware Decompilation

Part of this work is a continuation of work in hardware decompilation. Prior work

focused on recognizing repeated logic in a netlist and decompiling it into loops at the

HDL level, producing more compact HDL code and speeding up simulation time [5].

The hardware loop rerolling technique uses suffix trees to find loop candidates and

sketch-guided program synthesis to reroll candidates into valid loops that are seman-

tically equivalent to the original netlist. Our work in this chapter presents another

design-focused application of hardware decompilation: technology re-targeting for

memories. Departing from previous techniques in hardware decompilation, this work

121

A Memory Design Language for Automated Memory Mapping Chapter 4

does not use suffix trees for netlist analysis or program synthesis for code generation,

and as a result scales to netlists with millions of cells.

4.6.2 Netlist Reverse Engineering

The memory decompilation technique introduced in this work builds off of previ-

ous research in reverse engineering sequential components in netlists. The prior work

falls in two categories: (1) register aggregation, and (2) memory identification. How-

ever, in contrast to reverse engineering, our work takes steps beyond just identification

of register and memory components, and also automatically generates semantically

equivalent HDL code. Automated memory technology mapping (and re-targeting)

requires working with a programmatic representation for compilation (and decompi-

lation).

Register Aggregation

Register aggregation is the problem of finding multi-bit registers from one-bit D-

flip flops in a gate-level netlist [86, 109]. DANA is a netlist reverse engineering frame-

work and presents a general solution for the register aggregation problem [109]. Their

techniqueuses a data-flowanalysis to groupD-flipflops intomulti-bit registers. DANA

generates a flip-flop dependency graph and groups flip-flops together based on shared

clock and control signals. Grouping proceeds based on predecessor and successor

analysis in the dependency graph. Our register aggregation technique for memory

decompilation can be viewed as a specialization of DANA’s technique geared towards

the structure of registers found in memories.

122

A Memory Design Language for Automated Memory Mapping Chapter 4

Memory Identification

There is prior reverse engineering work that describes a technique for identifying

small RAMs and register files in netlists [110, 86]. Our memory decompilation tech-

nique mirrors this work’s high-level algorithm for outlining the main boundary of the

memory block’s logic. Due to the regular structure of the synthesized logic for mem-

ory blocks, there is a clear pattern to identifying the multiplexer and decoder trees

for a memory block’s read and write port logic. However, our technique can iden-

tify memory blocks with richer semantics that previous work cannot—distinguishing

more read/write port configurations, write masking, and othermemory block features

used in common SoC components such as caches and branch predictors.

4.6.3 Rewriting in HDLs

Existing HDLs use rewrite-driven strategies to elaborate hardware designs written

in high-level programming languages [111, 112, 103, 25]. Many of these languages

target Verilog, which does not address the technology mapping problem. Elephant

presents a new category of HDL that focuses specifically on the memory mapping

problem while also utilizing the “elaboration-through-execution” strategy. Besides

code compilation, rewriting techniques have also been applied to other EDA tasks such

as synthesis and optimization [113, 114, 115, 116, 117, 118], with recent work using an

efficient rewriting technique called equality saturation [104, 100].

4.6.4 Memory Compilers

Memories in commodity ASIC products are near-universally generated from com-

mercial SRAM compilers. Memory options and configuration ranges may vary signif-

icantly between technology nodes or even simply across foundries. Because of this,

123

A Memory Design Language for Automated Memory Mapping Chapter 4

designers spend great effort optimizing configurations as SRAM often comprises the

lion’s share of the modern ASIC area. These are provided as part of a standard PDK

during a tapeout and so come with significant costs as well as usage restrictions. Syn-

opsys provides Generic Memory Compiler [119] to eligible universities but restricts

the technology to educational PDKs.

In contrast, OpenRAM [120] generates SRAMviews in realistic technologies. How-

ever, designers must manually optimize configurations as with commercial offerings.

Our work builds upon this by formally identifying functional configuration knobs to

enabling automated design sweeps of generated memory configurations.

4.7 Conclusion

This chapter presented Elephant, a memory design language for automated mem-

ory technology mapping. Through a rewrite-driven elaboration semantics, we show

how Elephant provides chip developers an abstract memory interface to map to many

memory technologies without littering their code base with ifdef blocks. For existing

designs, we also present a decompilation-based memory lifting technique which en-

ables automated technology re-targeting. We show that Elephant effectively targets five

backends for three different technology platforms—for simulation, ASIC, and FPGA.

We evaluate memory decompilation over a set of hardware design benchmarks show-

ing that our technique identifies memories where state-of-the-art memory inference

does not. Further, we demonstrate technology re-targeting on real-world open-source

SoC designs.

124

Chapter 5

Conclusions

The “golden age” of computer architecture [2] offers an exciting opportunity to ad-

vance the design of novel, open computing architectures and specialized hardware.

However, we can only realize this if we improve the languages and tools that chip de-

signers use. In this thesis, I move the field forward by integrating formal methods

into open-source language-driven hardware design tools, opening two new areas in

the chip design space—control logic synthesis and hardware decompilation—and

enabling novel design processes based around increasing developer agility with cor-

rectness guarantees.

As control logic synthesis and hardware decompilation are both new areas, there

aremany future directions to pursue. With control logic synthesis, there is future work

to develop new techniques that can synthesize control formore control structures, such

as microcode for complex instructions. Handling larger microarchitectures with more

optimizations will also require advancing the state-of-the-art in automated reasoning

techniques to push past the limitations of CEGIS-style program synthesis.

For hardware decompilation, there are many future directions in terms of recover-

ing more kinds of programming abstractions such as finite state machines, protocols,

125

and control logic. One long-term goal for this work is an end-to-end decompiler which

composes many decompilation passes together to recover as many abstractions as pos-

sible from a netlist. Further, there is additional work in improving hardware decom-

pilation for other hardware design tasks. For instance, a large problem in industrial

settings are developers needing to understand and modify highly tuned and low-level

RTL code. Lifting this low-level RTL code to “behavioral” HDL code would deliver

enormous value for developers in terms of making code bases more explainable (where

future work would need to rigorously define “explainable”).

Going forward, I envision new programming languages and compilers enhanced

with automated reasoning techniques deployed across the hardware–software stack

for emerging computing architectures—from system specification, to the hardware–

software interface, all the way down to the physical design level. Along each of these

layers, I believe wemust work across disciplines to ensure programmer usability while

balancing performancemetrics with correctness. Achieving this visionwill require ad-

vancing the state-of-the art in formal methods and continuing to approach the hard-

ware design process through the perspective of programming languages abstractions.

126

Bibliography

[1] H. Foster, “Wilson research group functional verification study.”
https://blogs.sw.siemens.com/verificationhorizons/2020/10/27/
prologue-the-2020-wilson-research-group-functional-verification-study/,
2020.

[2] J. L. Hennessy and D. A. Patterson, A new golden age for computer architecture,
Commun. ACM 62 (Jan., 2019) 48–60.

[3] Z. D. Sisco, A. D. Alex, Z. Ma, Y. Aghamohammadi, B. Kong, B. Darnell,
T. Sherwood, B. Hardekopf, and J. Balkind, Control logic synthesis: Drawing the
rest of the owl, in Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 4,
ASPLOS ’24, (New York, NY, USA), p. 63–78, Association for Computing
Machinery, 2025.

[4] Z. D. Sisco, J. Balkind, T. Sherwood, and B. Hardekopf, A position on program
synthesis for processor development, in LATTE ’22: Workshop on Languages, Tools,
and Techniques for Accelerator Design at ASPLOS 2022, 3, 2022.

[5] Z. D. Sisco, J. Balkind, T. Sherwood, and B. Hardekopf, Loop rerolling for
hardware decompilation, Proc. ACM Program. Lang. 7 (jun, 2023).

[6] A. Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger, and
P. C. W. Kim, Supervised autonomous robotic soft tissue surgery, Science
Translational Medicine 8 (2016), no. 337 337ra64–337ra64,
[https://www.science.org/doi/pdf/10.1126/scitranslmed.aad9398].

[7] A. Cui, The next frontier in cyberwar: Embedded devices, GCN (2022)
[https://gcn.com/cybersecurity/2022/02/next-frontier-cyberwar-embedded-
devices/362545/].

[8] lowRISC, “Opentitan.” https://docs.opentitan.org/, 2022.

[9] J. R. Burch and D. L. Dill, Automatic verification of pipelined microprocessor control,
in Proceedings of the 6th International Conference on Computer Aided Verification,
CAV ’94, (Berlin, Heidelberg), p. 68–80, Springer-Verlag, 1994.

127

https://blogs.sw.siemens.com/verificationhorizons/2020/10/27/prologue-the-2020-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2020/10/27/prologue-the-2020-wilson-research-group-functional-verification-study/
http://xxx.lanl.gov/abs/https://www.science.org/doi/pdf/10.1126/scitranslmed.aad9398
http://xxx.lanl.gov/abs/https://gcn.com/cybersecurity/2022/02/next-frontier-cyberwar-embedded-devices/362545/
http://xxx.lanl.gov/abs/https://gcn.com/cybersecurity/2022/02/next-frontier-cyberwar-embedded-devices/362545/
https://docs.opentitan.org/

[10] M. N. Velev and R. E. Bryant, Formal verification of superscale microprocessors with
multicycle functional units, exception, and branch prediction, in Proceedings of the
37th Annual Design Automation Conference, DAC ’00, (New York, NY, USA),
p. 112–117, Association for Computing Machinery, 2000.

[11] R. Hosabettu, G. Gopalakrishnan, and M. Srivas, Verifying advanced
microarchitectures that support speculation and exceptions, in Computer Aided
Verification (E. A. Emerson and A. P. Sistla, eds.), (Berlin, Heidelberg),
pp. 521–537, Springer Berlin Heidelberg, 2000.

[12] R. Jhala and K. L. McMillan,Microarchitecture verification by compositional model
checking, in Proceedings of the 13th International Conference on Computer Aided
Verification, CAV ’01, (Berlin, Heidelberg), p. 396–410, Springer-Verlag, 2001.

[13] J. Sawada and W. A. Hunt, Verification of FM9801: An out-of-order microprocessor
model with speculative execution, exceptions, and program-modifying capability,
Formal Methods in System Design 20 (2002), no. 2 187–222.

[14] P. Manolios and S. K. Srinivasan, A refinement-based compositional reasoning
framework for pipelined machine verification, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 16 (2008), no. 4 353–364.

[15] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen, A. Pathirane,
O. Shepherd, P. Vrabel, and A. Zaidi, End-to-end verification of processors with
isa-formal, in Computer Aided Verification (S. Chaudhuri and A. Farzan, eds.),
(Cham), pp. 42–58, Springer International Publishing, 2016.

[16] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish, O. Abrahamsson, and
A. Fox, Verified compilation on a verified processor, in Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2019, (New York, NY, USA), p. 1041–1053, Association for Computing
Machinery, 2019.

[17] D. Gao and T. Melham, End-to-end formal verification of a risc-v processor extended
with capability pointers, in 2021 Formal Methods in Computer Aided Design
(FMCAD), pp. 24–33, 2021.

[18] P. Subramanyan, Y. Vizel, S. Ray, and S. Malik, Template-based Synthesis of
Instruction-Level Abstractions for SoC Verification, in Proceedings of the Conference
on Formal Methods in Computer-Aided Design, pp. 160–167, 2017.

[19] B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and S. Malik,
Instruction-level abstraction (ila): A uniform specification for system-on-chip (soc)
verification, ACM Trans. Des. Autom. Electron. Syst. 24 (dec, 2018).

128

[20] B.-Y. Huang, S. Ray, A. Gupta, J. M. Fung, and S. Malik, Formal Security
Verification of Concurrent Firmware in SoCs using Instruction-Level Abstraction for
Hardware, in Proc. Design Automation Conference, p. 91, 2018.

[21] H. Zhang, C. Trippel, Y. A. Manerkar, A. Gupta, M. Martonosi, and S. Malik,
ILA-MCM: Integrating Memory Consistency Models with Instruction-Level
Abstractions for Heterogeneous System-on-Chip Verification, in Proc. Conf. Formal
Methods in Computer-Aided Design, pp. 1–10, 2018.

[22] B.-Y. Huang, H. Zhang, A. Gupta, and S. Malik, ILAng: A Modeling and
Verification Platform for SoCs using Instruction-Level Abstractions, in Proc. Int.
Conf. Tools and Algorithms for the Construction and Analysis of Systems,
pp. 351–357, 2019.

[23] H. Zhang, W. Yang, G. Fedyukovich, A. Gupta, and S. Malik, Synthesizing
environment invariants for modular hardware verification, in Verification, Model
Checking, and Abstract Interpretation (D. Beyer and D. Zufferey, eds.), (Cham),
pp. 202–225, Springer International Publishing, 2020.

[24] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M. Norton,
P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark, N. Krishnaswami,
and P. Sewell, ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS, in Proc.
46th ACM SIGPLAN Symposium on Principles of Programming Languages, Jan.,
2019. Proc. ACM Program. Lang. 3, POPL, Article 71.

[25] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and T. Sherwood, A
pythonic approach for rapid hardware prototyping and instrumentation, in 2017 27th
International Conference on Field Programmable Logic and Applications (FPL),
pp. 1–7, 2017.

[26] E. Torlak and R. Bodik, Growing solver-aided languages with Rosette, in Proceedings
of the 2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2013, (New York, NY, USA),
p. 135–152, Association for Computing Machinery, 2013.

[27] E. Torlak and R. Bodik, A lightweight symbolic virtual machine for solver-aided host
languages, SIGPLAN Not. 49 (June, 2014) 530–541.

[28] B.-Y. Huang, “Imdb-archive.”
https://github.com/PrincetonUniversity/IMDb-Archive, 2018.

[29] lowRISC, “Ibex: An embedded 32 bit RISC-V CPU core.”
https://ibex-core.readthedocs.io/en/latest/, 2018.

129

https://github.com/PrincetonUniversity/IMDb-Archive
https://ibex-core.readthedocs.io/en/latest/

[30] H. Lu, Y. Xing, A. Gupta, and S. Malik, Soc protocol implementation verification
using instruction-level abstraction specifications, ACM Trans. Des. Autom. Electron.
Syst. 28 (oct, 2023).

[31] C. Wolf, “Yosys open synthesis suite.” http://www.clifford.at/yosys/, 2024.

[32] J. Bornholt and E. Torlak, Finding code that explodes under symbolic evaluation,
Proc. ACM Program. Lang. 2 (Oct., 2018).

[33] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak, and X. Wang, Scaling
symbolic evaluation for automated verification of systems code with serval, in
Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,
(New York, NY, USA), p. 225–242, Association for Computing Machinery, 2019.

[34] K. Ryan and C. Sturton, Sylvia: Countering the path explosion problem in the
symbolic execution of hardware designs, in 2023 Formal Methods in Computer Aided
Design (FMCAD), pp. 110–121, 2023.

[35] A. Becker, D. Novo, and P. Ienne, Automated circuit elaboration from incomplete
architectural descriptions, in 2013 Asilomar Conference on Signals, Systems and
Computers, pp. 391–395, IEEE, 2013.

[36] A. Becker, D. Novo, and P. Ienne, SKETCHILOG: Sketching combinational circuits,
in 2014 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1–4,
2014.

[37] A. Ardeshiricham, Y. Takashima, S. Gao, and R. Kastner, Verisketch:
Synthesizing secure hardware designs with timing-sensitive information flow
properties, in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, (New York, NY, USA), p. 1623–1638,
Association for Computing Machinery, 2019.

[38] K. v. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala, Solver-aided constant-time
hardware verification, in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’21, (New York, NY, USA),
p. 429–444, Association for Computing Machinery, 2021.

[39] N. Bruns, V. Herdt, and R. Drechsler, Processor verification using symbolic
execution: A RISC-V case-study, in 2023 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1–6, 2023.

[40] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori, Bespoke processors for
applications with ultra-low area and power constraints, in Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA ’17, (New York,
NY, USA), p. 41–54, Association for Computing Machinery, 2017.

130

http://www.clifford.at/yosys/

[41] A. Athalye, M. F. Kaashoek, and N. Zeldovich, Verifying hardware security
modules with Information-Preserving refinement, in 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22), (Carlsbad, CA),
pp. 503–519, USENIX Association, July, 2022.

[42] A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, and N. Zeldovich, Notary: A
device for secure transaction approval, in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, (New York, NY, USA), p. 97–113, Association for
Computing Machinery, 2019.

[43] Y. Yang, T. Bourgeat, S. Lau, and M. Yan, Pensieve: Microarchitectural modeling for
security evaluation, in Proceedings of the 50th Annual International Symposium on
Computer Architecture, ISCA ’23, (New York, NY, USA), Association for
Computing Machinery, 2023.

[44] D. Zagieboylo, C. Sherk, E. Suh, and A. Myers, PDL a high-level hardware design
language for pipelined processors, in Proceedings of the 43rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2022,
(New York, NY, USA), Association for Computing Machinery, 6, 2022.

[45] R. Nikhil, Bluespec System Verilog: Efficient, correct RTL from high level
specifications, in Proceedings. Second ACM and IEEE International Conference on
Formal Methods and Models for Co-Design, 2004. MEMOCODE ’04., pp. 69–70,
2004.

[46] R. Gonzalez, Xtensa: a configurable and extensible processor, IEEE Micro 20 (2000),
no. 2 60–70.

[47] C. D. Systems, TIE language—the fast path to high-performance embedded SoC
processing, tech. rep., Cadence Design Systems, Inc., San Jose, CA, USA, 2016.

[48] K. L. McMillan, A methodology for hardware verification using compositional model
checking, Sci. Comput. Program. 37 (may, 2000) 279–309.

[49] R. Brayton and A. Mishchenko, ABC: An academic industrial-strength verification
tool, in Computer Aided Verification (T. Touili, B. Cook, and P. Jackson, eds.),
(Berlin, Heidelberg), pp. 24–40, Springer Berlin Heidelberg, 2010.

[50] J. S. Zhang, S. Sinha, A. Mishchenko, R. K. Brayton, andM. Chrzanowska-Jeske,
Simulation and satisfiability in logic synthesis, Computing 7 (2005) 14.

[51] D. Kroening, Computing over-approximations with bounded model checking, in
Proceedings of the Third International Workshop on Bounded Model Checking (BMC
2005), vol. 144, pp. 79–92, January, 2006.

131

[52] V. D’Silva, M. Purandare, and D. Kroening, Approximation refinement for
interpolation-based model checking, in Verification, Model Checking, and Abstract
Interpretation (VMCAI), vol. 4905 of Lecture Notes in Computer Science,
pp. 68–82, Springer, 2008.

[53] R. Mukherjee, D. Kroening, and T. Melham, Hardware verification using software
analyzers, in IEEE Computer Society Annual Symposium on VLSI, pp. 7–12, IEEE,
2015.

[54] M. Mann, A. Irfan, F. Lonsing, Y. Yang, H. Zhang, K. Brown, A. Gupta, and
C. Barrett, Pono: A flexible and extensible smt-based model checker, in Computer
Aided Verification (A. Silva and K. R. M. Leino, eds.), (Cham), pp. 461–474,
Springer International Publishing, 2021.

[55] C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huff, and P. Hanrahan, CoSA:
Integrated verification for agile hardware design, in 2018 Formal Methods in
Computer Aided Design (FMCAD), pp. 1–5, 2018.

[56] A. Goel and K. Sakallah, Avr: Abstractly verifying reachability, in Tools and
Algorithms for the Construction and Analysis of Systems (A. Biere and D. Parker,
eds.), (Cham), pp. 413–422, Springer International Publishing, 2020.

[57] YosysHQ, “Symbiyosys.” https://github.com/YosysHQ/sby, 2022.

[58] A. Dobis, T. Petersen, H. J. Damsgaard, K. J. Hesse Rasmussen, E. Tolotto, S. T.
Andersen, R. Lin, and M. Schoeberl, Chiselverify: An open-source hardware
verification library for chisel and scala, in 2021 IEEE Nordic Circuits and Systems
Conference (NorCAS), pp. 1–7, 2021.

[59] D. Lustig, M. Pellauer, and M. Martonosi, Verifying correct microarchitectural
enforcement of memory consistency models, IEEE Micro 35 (2015), no. 3 72–82.

[60] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee, COATCheck: Verifying
memory ordering at the hardware-OS interface, in Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, (New York, NY, USA), p. 233–247, Association
for Computing Machinery, 2016.

[61] Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi, CCICheck: Using µhb
graphs to verify the coherence-consistency interface, in 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 26–37, 2015.

[62] Y. A. Manerkar, D. Lustig, M. Martonosi, and M. Pellauer, RTLcheck: Verifying
the memory consistency of RTL designs, in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17, (New
York, NY, USA), p. 463–476, Association for Computing Machinery, 2017.

132

https://github.com/YosysHQ/sby

[63] Y. Hsiao, D. P. Mulligan, N. Nikoleris, G. Petri, and C. Trippel, Synthesizing
formal models of hardware from RTL for efficient verification of memory model
implementations, in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’21, (New York, NY, USA), p. 679–694, Association
for Computing Machinery, 2021.

[64] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt,
C. Markley, J. Lawson, and J. Bachrach, Reusability is FIRRTL ground: Hardware
construction languages, compiler frameworks, and transformations, in 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 209–216, Nov, 2017.

[65] S. Beamer, A case for accelerating software rtl simulation, IEEE Micro 40 (2020),
no. 4 112–119.

[66] M. K. Ganai and A. Kuehlmann, On-the-fly compression of logical circuits, in
International Workshop on Logic Synthesis, 2000.

[67] B. Su, S. Ding, and L. Jin, An improvement of trace scheduling for global microcode
compaction, in Proceedings of the 17th Annual Workshop on Microprogramming,
MICRO 17, p. 78–85, IEEE Press, 1984.

[68] B. Su, S. Ding, and J. Xia, URPR—An extension of URCR for software pipelining, in
Proceedings of the 19th Annual Workshop on Microprogramming, MICRO 19, (New
York, NY, USA), p. 94–103, Association for Computing Machinery, 1986.

[69] G. Stiff and F. Vahid, New decompilation techniques for binary-level co-processor
generation, in Proceedings of the 2005 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’05, (USA), p. 547–554, IEEE Computer Society,
2005.

[70] E.-W. Hu, B. Su, and J. Wang, Instruction level loop de-optimization, in Computer
and Information Science 2015 (R. Lee, ed.), (Cham), pp. 221–234, Springer
International Publishing, 2016.

[71] R. C. O. Rocha, P. Petoumenos, B. Franke, P. Bhatotia, and M. O’Boyle, Loop
rolling for code size reduction, in 2022 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pp. 217–229, 2022.

[72] T. Ge, Z. Mo, K. Wu, X. Zhang, and Y. Lu, Rollbin: Reducing code-size via loop
rerolling at binary level, in Proceedings of the 23rd ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded Systems,
LCTES 2022, (New York, NY, USA), p. 99–110, Association for Computing
Machinery, 2022.

133

[73] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, Lava: Hardware design in
Haskell, SIGPLAN Not. 34 (Sept., 1998) 174–184.

[74] A. Mycroft and R. Sharp, Higher-level techniques for hardware description and
synthesis, International Journal on Software Tools for Technology Transfer 4 (2003),
no. 3 271–297.

[75] J. O’Donnell, Overview of Hydra: A concurrent language for synchronous digital
circuit design, International Journal of Information 9 (March, 2006) 249–264.

[76] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling, Introducing
Kansas Lava, in Implementation and Application of Functional Languages (M. T.
Morazán and S.-B. Scholz, eds.), (Berlin, Heidelberg), pp. 18–35, Springer
Berlin Heidelberg, 2010.

[77] B. Baker, On finding duplication and near-duplication in large software systems,
Proceedings of 2nd Working Conference on Reverse Engineering (1995) 86–95.

[78] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: a multilinguistic token-based
code clone detection system for large scale source code, IEEE Transactions on Software
Engineering 28 (2002), no. 7 654–670.

[79] A. Solar-Lezama, Program sketching, International Journal on Software Tools for
Technology Transfer 15 (2013), no. 5 475–495.

[80] J. Stoye and D. Gusfield, Simple and flexible detection of contiguous repeats using a
suffix tree, Theoretical Computer Science 270 (2002), no. 1 843–856.

[81] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, Linear-time
longest-common-prefix computation in suffix arrays and its applications, in
Combinatorial Pattern Matching (A. Amir, ed.), (Berlin, Heidelberg),
pp. 181–192, Springer Berlin Heidelberg, 2001.

[82] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, Combinatorial
sketching for finite programs, in Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
XII, (New York, NY, USA), p. 404–415, Association for Computing Machinery,
2006.

[83] M. B. Taylor, BaseJump STL: SystemVerilog needs a standard template library for
hardware design, in Proceedings of the 55th Annual Design Automation Conference,
DAC ’18, (New York, NY, USA), Association for Computing Machinery, 2018.

[84] L. Tang and S. Davidson, “BSG Micro Designs.”
https://github.com/bsg-idea/bsg_micro_designs, 2019.

134

https://github.com/bsg-idea/bsg_micro_designs

[85] U. Berkeley, Berkeley logic interchange format (BLIF), Oct Tools Distribution 2
(1992) 197–247.

[86] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascon, W. Tan, A. Tiwari,
N. Shankar, S. A. Seshia, and S. Malik, Reverse engineering digital circuits using
structural and functional analyses, IEEE Transactions on Emerging Topics in
Computing 2 (jan, 2014) 63–80.

[87] W. Snyder, “Verilator.” https://www.veripool.org/verilator/, 2024.

[88] N. Rubanov, A high-performance subcircuit recognition method based on the
nonlinear graph optimization, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 25 (2006), no. 11 2353–2363.

[89] T. Meade, Y. Jin, M. Tehranipoor, and S. Zhang, Gate-level netlist reverse
engineering for hardware security: Control logic register identification, in 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1334–1337, 2016.

[90] Y. Shi, C. W. Ting, B. Gwee, and Y. Ren, A highly efficient method for extracting
FSMs from flattened gate-level netlist, in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, pp. 2610–2613, 2010.

[91] T. Meade, S. Zhang, and Y. Jin, Netlist reverse engineering for high-level
functionality reconstruction, in 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 655–660, 2016.

[92] W. Li, Z. Wasson, and S. A. Seshia, Reverse engineering circuits using behavioral
pattern mining, in 2012 IEEE International Symposium on Hardware-Oriented
Security and Trust, pp. 83–88, 2012.

[93] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik, N. Shankar,
and S. A. Seshia,WordRev: Finding word-level structures in a sea of bit-level gates,
in 2013 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 67–74, 2013.

[94] A. Gascón, P. Subramanyan, B. Dutertre, A. Tiwari, D. Jovanović, and S. Malik,
Template-based circuit understanding, in 2014 Formal Methods in Computer-Aided
Design (FMCAD), pp. 83–90, 2014.

[95] M. Soeken, B. Sterin, R. Drechsler, and R. Brayton, Simulation graphs for reverse
engineering, in 2015 Formal Methods in Computer-Aided Design (FMCAD),
pp. 152–159, 2015.

[96] B. Cakir and S. Malik, Reverse engineering digital ics through geometric embedding
of circuit graphs, ACM Trans. Des. Autom. Electron. Syst. 23 (July, 2018).

135

https://www.veripool.org/verilator/

[97] J. Portillo, T. Meade, J. Hacker, S. Zhang, and Y. Jin, RERTL: Finite state
transducer logic recovery at register transfer level, in 2019 Asian Hardware Oriented
Security and Trust Symposium (AsianHOST), pp. 1–6, 2019.

[98] T. Zhang, J. Wang, S. Guo, and Z. Chen, A comprehensive FPGA reverse
engineering tool-chain: From bitstream to RTL code, IEEE Access 7 (2019)
38379–38389.

[99] C. Nandi, M. Willsey, A. Anderson, J. R. Wilcox, E. Darulova, D. Grossman,
and Z. Tatlock, Synthesizing structured cad models with equality saturation and
inverse transformations, in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2020, (New York, NY,
USA), p. 31–44, Association for Computing Machinery, 2020.

[100] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha, egg:
Fast and extensible equality saturation, Proc. ACM Program. Lang. 5 (jan, 2021).

[101] C. Wolf, “Memory handling.” https://yosyshq.readthedocs.io/projects/
yosys/en/latest/using_yosys/synthesis/memory.html, 2024.

[102] Xilinx, “Ultrascale architecture memory resources.”
https://docs.amd.com/v/u/en-US/ug573-ultrascale-memory-resources,
2024.

[103] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, Chisel: Constructing hardware in a Scala
embedded language, in Proceedings of the 49th Annual Design Automation
Conference, DAC ’12, (New York, NY, USA), p. 1216–1225, Association for
Computing Machinery, 2012.

[104] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, Equality saturation: a new approach to
optimization, SIGPLAN Not. 44 (jan, 2009) 264–276.

[105] C. G. Nelson, Techniques for program verification. Stanford University, 1980.

[106] D. Cao, R. Kunkel, C. Nandi, M. Willsey, Z. Tatlock, and N. Polikarpova, babble:
Learning better abstractions with e-graphs and anti-unification, Proc. ACM Program.
Lang. 7 (jan, 2023).

[107] G. Tziantzioulis, T.-J. Chang, J. Balkind, J. Tu, F. Gao, and D. Wentzlaff, OPDB:
A scalable and modular design benchmark, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41 (2022), no. 6 1878–1887.

[108] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao, C. Zhao,
Z. Azad, S. Canakci, B. Veluri, T. Guarino, A. Joshi, M. Oskin, and M. B. Taylor,
Blackparrot: An agile open-source risc-v multicore for accelerator socs, IEEE Micro 40
(2020), no. 4 93–102.

136

https://yosyshq.readthedocs.io/projects/yosys/en/latest/using_yosys/synthesis/memory.html
https://yosyshq.readthedocs.io/projects/yosys/en/latest/using_yosys/synthesis/memory.html
https://docs.amd.com/v/u/en-US/ug573-ultrascale-memory-resources

[109] N. Albartus, M. Hoffmann, S. Temme, L. Azriel, and C. Paar, DANA - universal
dataflow analysis for gate-level netlist reverse engineering, IACR Transactions on
Cryptographic Hardware and Embedded Systems 2020 (Aug, 2020) 309–336.

[110] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, and
S. Malik, Reverse engineering digital circuits using functional analysis, in 2013
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1277–1280, 2013.

[111] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards, C?ash: Structural
descriptions of synchronous hardware using haskell, in 2010 13th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools,
pp. 714–721, 2010.

[112] C. Baaij and J. Kuper, Using rewriting to synthesize functional languages to digital
circuits, in Trends in Functional Programming (J. McCarthy, ed.), (Berlin,
Heidelberg), pp. 17–33, Springer Berlin Heidelberg, 2014.

[113] Y. Pi, H. Zou, T. Li, W. Qu, and H. Wan, Esfo: Equality saturation for firrtl
optimization, in Proceedings of the Great Lakes Symposium on VLSI 2023,
pp. 581–586, 2023.

[114] K.-W. Ho, S.-T. Chung, T.-F. Chen, Y.-W. Fan, C. Cheng, C.-H. Liu, and J.-H. R.
Jiang, Wolfex: Word-level function extraction and simplification from gate-level
arithmetic circuits, in 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1–9, IEEE, 2023.

[115] S. Coward, G. A. Constantinides, and T. Drane, Automatic datapath optimization
using e-graphs, in 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH),
pp. 43–50, 2022.

[116] A. Wanna, S. Coward, T. Drane, G. A. Constantinides, and M. D. Ercegovac,
Multiplier optimization via e-graph rewriting, arXiv preprint arXiv:2312.06004
(2023).

[117] E. Ustun, I. San, J. Yin, C. Yu, and Z. Zhang, Impress: Large integer multiplication
expression rewriting for fpga hls, in 2022 IEEE 30th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 1–10, IEEE, 2022.

[118] G. H. Smith, Z. D. Sisco, T. Techaumnuaiwit, J. Xia, V. Canumalla, A. Cheung,
Z. Tatlock, C. Nandi, and J. Balkind, There and back again: A netlist’s tale with
much egraphin’, inWorkshop on Languages, Tools, and Techniques for Accelerator
Design, 2024.

137

[119] R. Goldman, K. Bartleson, T. Wood, V. Melikyan, and E. Babayan, Synopsys’
educational generic memory compiler, in 10th European Workshop on
Microelectronics Education (EWME), pp. 89–92, 2014.

[120] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar, Openram:
An open-source memory compiler, in 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–6, 2016.

138

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Organization of this Document

	Control Logic Synthesis
	Introduction
	Background
	Control Logic Synthesis Technique
	Case Studies
	Evaluation
	Related work
	Conclusion

	Loop Rerolling for Hardware Decompilation
	Introduction
	The Maki Intermediate Language
	Loop Identification
	Sketch Generation for Loop Rerolling
	Program Synthesis for Loop Rerolling
	Evaluation
	Related Work
	Conclusion

	A Memory Design Language for Automated Memory Mapping
	Introduction
	Background
	Elephant for Automated Memory Technology Mapping
	Memory Decompilation
	Evaluation
	Related Work
	Conclusion

	Conclusions
	Bibliography

