
VERIFYING DATA-ORIENTED GADGETS IN BINARY PROGRAMS TO
BUILD DATA-ONLY EXPLOITS

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science

By

ZACHARY DAVID SISCO
B.S., Ohio University, 2014

2018
Wright State University

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL

June 14, 2018

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY Zachary David Sisco ENTITLED Verifying Data-Oriented
Gadgets in Binary Programs to Build Data-only Exploits BE ACCEPTED IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
Master of Science.

Adam R. Bryant, Ph.D.
Thesis Co-Director

John M. Emmert, Ph.D.
Thesis Co-Director

Mateen M. Rizki, Ph.D.
Chair, Computer Science and Engineering

Committee on Final Examination:

Meilin Liu, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Barry Milligan, Ph.D.
Interim Dean of the Graduate School

Abstract

Sisco, Zachary David. M.S. Computer Science and Engineering, Wright State Univer-
sity, 2018. Verifying Data-Oriented Gadgets in Binary Programs to Build Data-Only
Exploits.

Data-Oriented Programming (DOP) is a data-only code-reuse exploit technique

that “stitches” together sequences of instructions to alter a program’s data flow to

cause harm. DOP attacks are difficult to mitigate because they respect the legiti-

mate control flow of a program and by-pass memory protection schemes such as Ad-

dress Space Layout Randomization, Data Execution Prevention, and Control Flow

Integrity. Techniques that describe how to build DOP payloads rely on a program’s

source code. This research explores the feasibility of constructing DOP exploits with-

out source code—that is, using only binary representations of programs. The lack

of semantic and type information introduces difficulties in identifying data-oriented

gadgets and their properties. This research uses binary program analysis techniques

and formal methods to identify and verify data-oriented gadgets, and determine if

they are reachable and executable from a given memory corruption vulnerability.

This information guides the construction of DOP attacks without the need for source

code, showing that common-off-the-shelf programs are also vulnerable to this class of

exploit.

iii

Contents

1 Introduction 1

2 Background 3

2.1 Data-Oriented Programming . 6

2.2 Data-Oriented Programming Without Source 7

3 Methodology 9

3.1 Finding Potential Data-oriented Gadgets 10

3.2 Program Verification Techniques to Classify Gadgets 16

3.2.1 Example Arithmetic Gadget Classification 20

3.3 Scope Inference and Optimizations for Classifying Gadgets 22

3.4 Automating Gadget Classification and Verification 23

3.5 Identifying Gadget Dispatchers . 24

3.6 Reachability Analysis . 24

4 Results 25

4.1 Evaluation . 26

4.2 Classification Results . 27

4.3 Reachability Results . 29

4.4 Case Studies . 31

4.4.1 sudo . 31

iv

4.4.2 unzip . 33

4.4.3 nginx . 34

4.5 Discussion . 37

4.5.1 Classification between Compilers 37

4.5.2 Simple versus Complex Gadgets 40

5 Conclusions 42

5.1 Related Work . 44

5.2 Future Work . 45

Bibliography 47

A Source code for Algorithms and Formalisms 54

A.1 Source code for Listing 3.1, SetRelevantVariables() 54

A.2 Source code for Listing 3.2, BackwardProgramSlice() 56

A.3 Source code for Listing 3.3, BDFA() 56

A.4 Source code for Listing 3.4, GetGadget() 58

A.5 Source code for Listing 3.6, GetPotentialGadgets() 60

A.6 Source code for computing Weakest Precondition of a GCL-like program 60

v

List of Figures

3.1 Example showing a snippet of C code and the corresponding X86 as-

sembly instructions. 10

3.2 Semantics for deriving weakest precondition of a GCL-like program. 20

3.3 Application of weakest precondition derivation rules for example gad-

get in Equation 3.1. 21

4.1 Conditional gadgets in “sudo”. 32

4.2 Dereferenced arithmetic gadgets in the perform io function in “sudo”. 33

4.3 Extra Dereference-Assignment gadget in perform io function in GCC-

compiled “sudo”. 34

4.4 Arithmetic gadgets in “unzip”. 34

4.5 Two dereferenced assignment gadgets in “nginx.” 35

vi

List of Tables

3.1 MinDOP language by Hu et al. (2016), and how it relates to C instruc-

tions. 10

3.2 A GCL-like syntax for specifying programs to apply predicate trans-

formers to derive weakest preconditions. 18

3.3 Postconditions for verifying data-oriented gadget semantics. 21

4.1 Data-oriented gadget identification results. 28

4.2 Data-oriented gadget statistics collected by Doggie. 29

4.3 Data-oriented gadget reachability results with respect to a vulnerable

function trace through a reported vulnerability from the CVE database

(CVE 2018). 30

4.4 Comparison of results for conditional gadget in “sudo”. 31

4.5 Comparison of results for arithmetic gadget in the perform io function

in “sudo.” . 33

4.6 Comparison of results for arithmetic gadget in the uz opts function in

“unzip.” . 34

4.7 Parameter details for the data-oriented gadgets from Figure 4.5 found

in “nginx.” . 36

4.8 Comparison of the number of Store instructions in each binary program

compiled under GCC and Clang. 38

vii

4.9 Comparison of parameter-loading strategies for gadgets in each pro-

gram compiled under GCC and Clang. 39

4.10 Comparison of verified data-oriented gadget totals and potential com-

plex gadgets that are omitted by Doggie. 40

viii

Acknowledgements

The research presented in this thesis was funded by Edaptive Computing Inc. through

Air Force Contract FA8650-14-D-1724-0003.

ix

Chapter 1

Introduction

“Data-only” attacks are a class of exploit triggered by a memory corruption vulner-

ability that manipulate a program’s data plane. Instead of hijacking control flow

by manipulating return addresses and function pointers, these attacks cause harm

by changing a program’s logic and decision-making routines (Chen et al. 2005). Be-

cause data-only attacks respect a program’s inherent control flow, they are harder to

mitigate than control-flow hijacking exploits using current defense mechanisms like

Address Space Layout Randomization, Data Execution Prevention, and Control-flow

Integrity.

Data-oriented programming is a data-only code-reuse exploit technique that stitches

together sequences of data-oriented instructions to simulate computation (Hu et al.

2016). In contrast to code-reuse attacks like return-oriented programming (Shacham

2007), data-oriented programming causes harm through manipulating a program’s

data plane while preserving the integrity of its control flow. Chaining together

sequences of instructions that simulate common micro-operations—such as assign-

ment, arithmetic, and conditionals—enable attackers to craft expressive, even Turing-

complete, exploits (Hu et al. 2016). These sequences of instructions are called data-

oriented gadgets. Correctly classifying data-oriented gadgets and their properties is

1

critical for successfully carrying out a data-oriented programming attack.

This thesis presents a methodology for classifying data-oriented gadgets in gen-

eral binary programs without source code. The classification methodology uses data-

flow analysis and program verification techniques to identify and verify data-oriented

gadgets and their properties. Current techniques rely on source code to classify

data-oriented gadgets. By classifying data-oriented gadgets without source code, the

methodology and resulting prototype presented in this thesis expand the range of

software that can be analyzed for this kind of threat—including “common-off-the-

shelf” binaries, closed-source binaries, and legacy programs. This enables security

analysts to investigate a generic binary and determine if any present data-oriented

gadgets can be triggered from a given vulnerability. Through this, the prototype de-

veloped in this research demonstrates the feasibility of crafting data-oriented exploits

in binaries without source code. Furthermore, this research explores the differences

in classifying data-oriented gadgets with and without source code and how compilers

introduce differences in the kinds of gadgets available in a binary and how they are

discovered.

This thesis is organized as follows. Chapter 2 presents an overview of data-only

attacks and data-oriented programming. Chapter 3 presents the data-oriented gadget

classification methodology for binary programs. Chapter 4 presents data-oriented

gadget classification results across a suite of programs and evaluates classification

differences between binary and source-based analysis techniques as well as differences

between compilers. Chapter 5 concludes this thesis with discussion of the results,

related work, and future work.

2

Chapter 2

Background

Malicious entities exploit memory corruption vulnerabilities in software to do harm.

These include errors such as stack and heap buffer overflows, integer overflows, use-

after-free, double-free and format string vulnerabilities (Chen et al. 2005). These ex-

ploits alter a program’s control data—such as return addresses or function pointers—

in order to inject malicious code or reuse library code (in the case of return-oriented

programming (Shacham 2007)) to cause harm. Thus, defense mechanisms that miti-

gate these attacks focus on protecting a program’s control data.

Stack canaries (Cowan et al. 1998) prevent control data from being overwritten by

inserting randomized “canary” values in between local variables and control data on

the stack. “W⊕X” (Pax Team 2003b), a protection scheme on Linux and BSD-based

operating systems, ensures that no memory region is marked both writable (‘W’) and

executable (‘X’) at the same time. A similar scheme for Windows operating systems,

Data Execution Prevention (DEP), marks data regions in memory as non-executable

(Andersen & Abella 2004).

Address Space Layout Randomization (ASLR) (Pax Team 2003a) randomizes the

locations of sections in an executing program—such as the stack, heap, and libraries—

in order to prevent code reuse attacks like return-oriented programming (Shacham

3

2007) and its variants (Checkoway et al. 2010, Bletsch et al. 2011, Bittau et al. 2014,

Bosman & Bos 2014, Carlini & Wagner 2014, Göktas et al. 2014, Schuster et al. 2015,

Hu et al. 2016). These attacks depend on knowing the addresses of libraries and

program sections. Therefore, randomizing the addresses during execution makes it

harder for the attacks to succeed. Program shepherding (Kiriansky et al. 2002) and

Control-flow Integrity (Abadi et al. 2005) are methods that ensure a program follows

its control-flow graph during execution, thus thwarting any attacks that hijack control

from a program. However, these control-oriented defense mechanisms do not mitigate

data-only attacks (Chen et al. 2005)—also called non-control data attacks, or data-

oriented attacks.

Data-only attacks differ from control-data attacks in that they do not alter the

control flow of a program. Rather than alter return addresses and function pointers,

a data-only attack tampers with data that affects the program’s logic or decision-

making routines (Chen et al. 2005). Such security-critical non-control data includes:

• Configuration Data (Chen et al. 2005)—loaded by a program at runtime which

initialize data structures that control a program’s behavior. Configuration files

may also define access control policies and set file path directives that determine

the location of other executables at runtime. Corrupting configuration data may

change the program’s behavior and overwrite access control policies.

• User Identity Data (Chen et al. 2005)—includes user ID, group membership,

and access permissions. Corruption of this data may allow an attacker to per-

form unauthorized actions.

• User Input Data (Chen et al. 2005)—an attacker may exploit a program’s input

validation methods by providing valid user input, then later corrupting it after

data validation to launch an attack. This is known as a “Time of Check to

Time of Use” attack.

4

• Decision-Making Data (Chen et al. 2005)—logical expressions determine how a

program’s control flow branches. Corrupting the values used in these expres-

sions, or the final boolean result, can change critical paths taken by a program.

• Passwords and Private Keys (Hu et al. 2015)—leaking critical security infor-

mation helps an attacker bypass access controls.

• Randomized Values (Hu et al. 2015)—memory protection schemes such as stack

canaries and ASLR use randomization. Understanding the randomization strate-

gies used at runtime helps an attacker bypass these defenses.

• System Call Parameters (Hu et al. 2015)—corrupting these parameters allows

an attacker to change a program’s behavior for privileged operations (e.g.,

setuid()).

Exploiting these types of security-critical data cause harm in the form of sensitive

information leakage, privilege escalation, and arbitrary code execution. The OpenSSL

Heartbleed vulnerability (US-CERT 2014) is an example of a data-oriented exploit

that leaks sensitive data—including private keys—without subverting the program’s

control flow. Due to a missing bounds check in the OpenSSL heartbeat request and

response protocol, an attacker sends a legitimate payload with a specified length up

to 64 kilobytes larger than the payload. Since the length field is not verified against

the actual length of the payload, memory leakage is caused by copying the response

into a buffer larger than the payload.

Another example of a data-only attack is found in a format string error in wu-ftpd

(version 2.6.0), a free FTP server daemon. A snippet of the vulnerable source code is

shown in Listing 2.1. The attack exploits the format string vulnerability in line 5 to

overwrite security-critical user identity data pw->pw uid with 0—the root user’s ID

(Chen et al. 2005). Then, line 7 temporarily escalates to root privileges in order to

invoke setsockopt() (Chen et al. 2005). Line 10 intends to drop root user privileges

5

but due to the overwritten data from the format string error, instead retains root user

privileges. This demonstrates root privilege escalation without overwriting return

addresses or function pointers (Chen et al. 2005).

1 struct passwd { uid_t pw_uid; ... } *pw;

2 ...

3 int uid = getuid();

4 pw->pw_uid = uid;

5 printf(...); // format string vulnerability

6 ...

7 seteuid(0); // set root id

8 setsockopt(...);

9 ...

10 seteuid(pw->pw_uid); // set unprivileged user id

11 ...

Listing 2.1: Vulnerable code snippet in wu-ftpd.

2.1 Data-Oriented Programming

A general method for constructing data-only attacks is called data-oriented program-

ming (DOP) (Hu et al. 2016). Given a vulnerable program, DOP builds Turing-

complete data-only attacks capable of a high degree of expressiveness and arbitrary

computation (Hu et al. 2016). The methodology resembles return-oriented program-

ming (Shacham 2007) and its variants (Checkoway et al. 2010, Bletsch et al. 2011,

Bittau et al. 2014, Bosman & Bos 2014, Carlini & Wagner 2014, Göktas et al. 2014,

Schuster et al. 2015), where data-oriented programming uses data-oriented gadgets

to build exploits. The distinction from these techniques is that data-oriented gadgets

do not violate a program’s legitimate control flow.

Data-oriented gadgets simulate a Turing machine by forming micro-operations

such as load, store, jump, arithmetic and logical calculations. These gadgets are built

from short sequences of instructions in a vulnerable program. These are different

from code gadgets in return-oriented programming because data-oriented gadgets

6

must execute in a legitimate control flow (Hu et al. 2016). Additionally, data-oriented

gadgets persist the output of their operations only to memory—whereas code gadgets

in return-oriented programming can use memory or registers (Hu et al. 2016). Overall

the requirements for building valid data-oriented exploits are stricter, but one benefit

is that data-oriented gadgets are not required to execute one after another; they can

be spread across functions or blocks of code.

A gadget dispatcher chains and sequences a series of data-oriented gadgets to

form an attack (Hu et al. 2016). This is also constructed from short sequences of

instructions. The most common code sequence for a dispatcher is a loop—allowing

attackers to select and repeatedly invoke gadgets each iteration. Attackers control the

selection and activation of gadgets through the program’s memory error (Hu et al.

2016). The selection of gadgets and the termination of the loop is either encoded in

a single payload, or interactively manipulated by the attacker from repeated memory

corruptions at the start of each iteration.

Overall, the evaluation of data-oriented programming by Hu et al. (2016) shows

that data-oriented gadgets are as prevalent in software as return-oriented gadgets

and it is possible to construct Turing-complete exploits that bypass current memory

protections.

2.2 Data-Oriented Programming Without Source

This thesis explores the feasibility of constructing data-oriented programming exploits

in binary programs without source code. Current techniques rely on a program’s

source code for semantic and type information to classify data-oriented gadgets. This

information is not available in binary programs.

Correctly classifying gadgets is necessary for constructing DOP exploits. To stitch

together a sequence of data-oriented gadgets an attacker tracks two aspects of every

7

gadget: (1) the semantics of the gadget (the micro-operation it simulates), and (2) the

parameters under control of the gadget. These aspects encompass correct classifica-

tion. Thus, a methodology that achieves this without source code expands the range

of programs that can be analyzed for this class of exploit. This includes generic bi-

naries, “common-off-the-shelf” binaries, closed-source binaries, and legacy programs.

This capability is currently not available and achieving it enables security analysts to

determine the kinds of data-oriented gadgets present in a general binary and if they

can be triggered from a given vulnerability.

8

Chapter 3

Methodology

There are three phases to classifying data-oriented gadgets in binary programs:

1. Identify potential gadgets using data-flow analysis techniques (Section 3.1);

2. Determine the semantics of the gadgets using program verification techniques

(Section 3.2);

3. Given a dynamic function trace triggering a vulnerable function in the program,

determine the reachability of the gadgets to the vulnerable program point (Sec-

tion 3.6).

The first two phases are the focus of this work, as the third phase, reachability, follows

immediately from phase one and two.

As defined by Hu et al. (2016), a data-oriented gadget is a sequence of instruc-

tions beginning with a load and ending with a store. The instructions in between

determine the semantics of the gadget. Hu et al. (2016) defines a basic language to

express data-oriented gadgets, MinDOP (Table 3.1). MinDOP defines expressions for

assignment, dereference (load and store), arithmetic, logical, and comparison opera-

tions. To carry out an attacker’s payload, MinDOP expresses a virtual instruction

set that manipulates virtual registers to simulate computation.

9

Semantics C Instructions DOP Virtual Instructions
Binary operation a � b *p � *q
Assignment a = b *p = *q

Load a = *b *p = **q

Store *a = b **p = *q

Where p = &a; q = &b; and � is arithmetic/logical/comparison operation.

Table 3.1: MinDOP language by Hu et al. (2016), and how it relates to C instructions.

For example, Figure 3.1 shows a data-oriented gadget in C code and then its corre-

sponding x86 assembly instructions. This is an addition gadget, adding the values of

*p and *q and storing the result in *p. Lines 1–4 of the assembly instructions in Figure

3.1 load and dereference the values of p and q. Line 5 is the addition operation that

makes this an addition gadget. The final instruction is a store instruction—making

this a valid data-oriented gadget—storing the result of the addition operation in *p.

*p += *q; /* p, q are (int*) type */

1 mov eax, DWORD PTR [ebp-0xC] ;load p to eax

2 mov edx, DWORD PTR [eax] ;load *p to edx

3 mov eax, DWORD PTR [ebp-0x10] ;load q to eax

4 mov eax, DWORD PTR [eax] ;load *q to eax

5 add edx, eax ;add *q to *p

6 mov eax, DWORD PTR [ebp-0xC] ;load p to eax

7 mov DWORD PTR [eax], edx ;store edx in *p

Figure 3.1: Example showing a snippet of C code and the corresponding X86 assembly
instructions.

3.1 Finding Potential Data-oriented Gadgets

To identify data-oriented gadgets (hereon referred to as “gadgets”) in binary pro-

grams, we disassemble the binary and lift the instructions to an intermediate repre-

sentation. To do this we use “angr” (Shoshitaishvili et al. 2016), a binary program

analysis framework written in Python that utilizes static and concolic analysis tech-

10

niques. The intermediate representation angr uses is VEX-IR, which angr exposes via

Python bindings (Shoshitaishvili et al. 2015). VEX-IR is an assembly-like intermedi-

ate representation used for binary analysis. It uses Static Single Assignment (SSA),

explicitly tracks instruction side-effects, and abstracts away architectural differences

to allow analysis for a variety of architectures.

Using angr’s built-in ability to recover functions and loops from the program’s

control-flow graph, we scan each loop in each function of the binary. It is necessary

to identify gadgets starting from loops, otherwise the gadgets will not be able to

be invoked from a gadget dispatcher—essentially, a loop that allows for continued

execution of a gadget. In addition to scanning the instructions of loops, we also

follow any function calls within the loops and scan for gadgets in those functions. We

consider these gadgets “reachable” from the original, enfolding loop.

To begin gadget identification, we consider any Store instruction and analyze

its preceding statements. Because a Store instruction has two arguments, we trace

the instructions for the variables of each argument. This tracing is done through

backward static program slicing. Given a program P , a backward program slice at

program point p with set of variables V contains only those preceding statements

in P that affect the variables in V at p (Weiser 1981). The resulting program slice

contains a subset of statements in P with only those statements that contribute to the

values in V at p. Since data-oriented gadgets always end in with a Store instruction,

a backward program slice begins at the program point of a Store instruction with

relevant variables being the destination of the store and the value being stored.

Gadget identification starts at the basic block level. As a result, this reduces the

complexity of program slicing because there are no loops or conditionals in a basic

block. Thus, a static backward program slice begins with the algorithm in Listing

3.1. The pseudocode in Listing 3.1 describes how to set all relevant variables in a

given basic block. Each statement in a basic block maps to a set of relevant variables.

11

Initially, only the Store statement has relevant variables set—these are the value and

destination arguments. Then, the algorithm propagates relevance by considering a

statement and its successor statement. If the variable defined by the statement is

in not the set of relevant variables for the successor statement then that variable is

added to the successor statement’s relevant variables. If the statement does define a

variable that is in the set of relevant variables for the successor statement, then the

algorithm adds all variables used by the current statement into its own set of relevant

variables. The result of this algorithm is a mapping from each statement in the basic

block to a set of variables indicating that those variables contribute in some way to

that statement.

function: SetRelevantVariables(B, relevantV ariables)
input: B, basic block; relevantV ariables, maps a statement to a set of variables
output: relevantV ariables

foreach statement i and successor statement j in B:
if i.LHS in relevantV ariable[j] then:

// add all variables used by i to the relevant variables of i
relevantV ariables[i].add(i.variables)

else :
// add that variable to the relevant variables of j
relevantV ariables[j].add(i.LHS)

Listing 3.1: Pseudocode for algorithm that sets relevant variables of a basic block.
Note that i.LHS refers to the left-hand side of the statement i—that is, the variable
being defined in an assignment statement. See Appendix A.1 for the Python source
code implementation.

Note that the algorithms and formalisms in this methodology section correspond

to Python source code for the implementation of a data-oriented gadget classification

tool. The relevant source code is included in the Appendix. The algorithm in Listing

3.1 corresponds to Appendix A.1.

Then, Listing 3.2 builds the program slice by referencing the set of relevant vari-

ables. Again, considering each statement in the basic block and its successor, the

algorithm checks if the variable defined in the current statement is in the set of rel-

evant variables for the proceeding statement. If so, the algorithm adds the current

statement to the program slice.

12

function: BackwardProgramSlice(B, relevantV ariables)
input: B, basic block; relevantV ariables, maps a statement to a set of variables
output: program slice, set of statements

relevantV ariables ← SetRelevantVariables(B, relevantV ariables)
foreach statement i and successor statement j in B:

if i.LHS in relevantV ariables[j] then:
add i to the program slice

Listing 3.2: Pseudocode for algorithm that builds a backward program slice given a
basic block. Note that i.LHS refers to the left-hand side of the statement i—that
is, the variable being defined in an assignment statement. See Appendix A.2 for the
Python source code implementation.

Then, given a program slice with respect to a Store instruction, we separate the

program slice to select only the statements that are relevant to each argument of the

Store. Listing 3.3 describes a backward data-flow analysis algorithm that does this

given a target variable and program slice, returning a stack of relevant statements.

The backward data-flow analysis algorithm traverses a program slice in reverse order

looking for statements that define v, the target variable. Once found, the algorithm

pushes the statement onto the output stack, then recursively calls itself for each of

the variables in the right-hand side of the definition of v. This is repeated until the

program slice is completely traversed. The backward data-flow analysis algorithm

presented here is a variation of liveness analysis—that is, a variable x at program

point p is live if the value of x at p could be used along some path starting at p (Aho

et al. 2006). The difference here is that Listing 3.3 returns the path (sequences of

instructions) that the target variable is live at.

To find a potential data-oriented gadget Listing 3.4 combines the algorithms in

Listings 3.1–3.3. This starts from the basic block-level with a prospective Store

instruction and uses each of the previous algorithms to generate two program slices

that trace each of the arguments of the Store instruction. The resulting pair of

instruction sequences is a potential data-oriented gadget.

The following example in Listing 3.5 demonstrates how backward static program

slicing followed by the backward data-flow analysis algorithm produces two program

13

function: BDFA(v, slice, istack)
input: v, target variable ; slice, program slice
output: istack, instruction stack tracing v

if slice is empty then:
return

i ← slice.pop()
if i is Assignment Instruction then:

if i.LHS = v then:
istack.push(i)
rhs ← GetVariables(i.RHS)
foreach variable t in rhs:

BDFA(t, slice, istack)
else :

BDFA(v, slice, istack)

Listing 3.3: This pseudocode presents an algorithm for Backward Data-flow Analysis
that picks out the statements in a program slice that contribute to a single target
variable. Note that i.LHS and i.RHS refer to the left and right-hand sides of the
statement i. See Appendix A.3 for the Python source code implementation.

function: GetGadget(store,B)
input: store, a Store Instruction; B, basic block
output: a pair of instruction stacks

relevantV ariables ← ∅
addrInstr ← ∅
dataInstr ← ∅

relevantV ariables[store].add(store.addr)
relevantV ariables[store].add(store.data)
progSlice ← BackwardProgramSlice(B, relevantV ariables)
addrInstr ← BDFA(store.addr, progSlice, addrInstr)
dataInstr ← BDFA(store.data, progSlice, dataInstr)
// Potential gadgets must have at least one Load instruction
if Load Instruction in addrInstr or dataInstr then:

return 〈addrInstr, dataInstr〉

Listing 3.4: This pseudocode presents an algorithm for data-oriented gadget
identification given a Store instruction in a basic block. Note that store.addr and
store.data refer to the destination and value arguments of the Store instruction,
respectively. See Appendix A.4 for the Python source code implementation.

14

slices that trace the definitions of the arguments to a Store instruction. In the ex-

ample, t37 and t36 are the address and data variables for the Store instruction’s

arguments, respectively. The program slice for t37 traces its definition to a load

from register EBP (VEX-IR identifies this as offset 28). After adding an offset to the

address of the base pointer, the next instruction loads the value and stores the result

in t33. Then, the final instruction adds a constant value of 0x10 to t33, storing

the final value in t37. Note how this program slice contains none of the instructions

relevant to the definition of t36—only t37.

Original basic block

t11 = GET:I32(offset=28) # 28 = EBP

t31 = Add32(t11,0xffffef70)

t33 = LDle:I32(t31)

t34 = Add32(t11,0xffffefec)

t36 = LDle:I32(t34)

t37 = Add32(t33,0x00000010)

STle(t37) = t36

Program slice tracing t37

t11 = GET:I32(offset=28)

t31 = Add32(t11,0xffffef70)

t33 = LDle:I32(t31)

t37 = Add32(t33,0x00000010)

Program slice tracing t36

t11 = GET:I32(offset=28)

t34 = Add32(t11,0xffffefec)

t36 = LDle:I32(t34)

Listing 3.5: Backward static program slice example in VEX-IR. The backward data-
flow analysis algorithm in Listing 3.3 splits the basic block into two program slices
for each argument to the Store instruction.

The following pseudocode in Listing 3.6 wraps all of the algorithms from Listings

3.1–3.4 together for whole-program potential gadget identification. Whole-program

analysis starts from each function in the program, drilling down to each loop, and then

to each basic block in the loop body. In addition to considering each Store instruction

15

in the loop body, the algorithm also checks function calls. Data-oriented gadgets in

these function calls are also reachable from the original loop. The “followCallGraph()”

function in Listing 3.6 traces the program’s call graph from the loop body to the called

function and returns the block of instructions corresponding to the called function.

function: GetPotentialGadgets(prog)
input: prog, program in VEX−IR
output: potentialGadgets, a list of pairs of instruction stacks

foreach func in prog:
foreach loop in func:

foreach basic block B in loop:
foreach stmt in B:

if stmt is Store Instruction then:
g ← getGadget(stmt,B)
potentialGadgets.add(g)

if stmt is Call Instruction then:
target ← followCallGraph(stmt)
foreach stmt in target:

if stmt is Store Instruction then:
g ← getGadget(stmt, target)
potentialGadgets.add(g)

Listing 3.6: This pseudocode presents an algorithm for whole-program identification
of potential data-oriented gadgets. See Appendix A.5 for the Python source code
implementation.

Unlike Return-oriented Programming (ROP) gadgets—which end in a return

instruction—data-oriented gadgets have two sequences of instructions to consider.

This is due to the two arguments to the Store instruction. The identification algo-

rithms presented here (Listings 3.1–3.4) describe how to build program slices that

contain only the relevant statements for each variable argument in a given Store in-

struction. The next step is to identify the semantics of the instructions for each part

of the gadget.

3.2 Program Verification Techniques to Classify

Gadgets

Hu et al. (2016) classifies data-oriented gadget semantics using a heuristic algorithm.

This favors speed over accuracy. However, in classifying gadgets in binary programs,

16

there is less semantic information available. This hinders the accuracy of a heuristic

algorithm. Thus, using program verification techniques to verify the correctness of

gadget semantics guards against misclassification. Additionally, for software security,

this approach gives analysts a provably verified set of gadgets present in a binary.

This research follows the work of Schwartz et al. (2011) which uses program ver-

ification techniques to classify ROP gadgets in binary programs. The problem of

classifying the semantics of a gadget involves considering a first-order predicate Q

which describes the semantics of a gadget within a program S. If a gadget is of the

type described by Q, then after executing the statements in S the program is in a

state satisfying Q. To determine if Q can be satisfied we find the Weakest Precon-

dition of S given Q—denoted wp(S,Q). The weakest precondition, wp(S,Q), is a

predicate that characterizes all initial states of the program S such that it terminates

in a final state satisfying Q—also called the postcondition (Dijkstra 1976).

Thus, gadget classification becomes a problem of deriving the weakest precon-

dition of program slices. Characterized by Dijkstra (1976), predicate transformers

are the rules that derive weakest preconditions from a program. Dijkstra’s Guarded

Command Language (GCL) is the syntax that encapsulates these transformations.

Flanagan & Saxe (2001) adapted GCL and predicate transformers to derive verifica-

tion conditions for Java programs. Brumley et al. (2007) adapted these rules again

for use in binary analysis, which is the focus in this work.

Since data-oriented gadgets in binaries are limited to basic blocks, the semantic

rules for computing the weakest precondition of a GCL-like program are reduced.

This is because the potential instructions within the basic block of a gadget do not

contain loops or conditional control-flow transfers.

Table 3.2 presents a GCL-like syntax for gadget verification. s ; s is composition

of statements, that is, statements executed in sequence. s � s is the “choice” opera-

tion, representing a non-deterministic choice between the execution of two statements

17

(Flanagan & Saxe 2001). Although this application uses VEX-IR as the binary pro-

gram intermediate representation, in general, any language can be used in its place.

The core operations—assignment, load, store, arithmetic, logical, comparison—are

common to intermediate languages.

GCL Statement s ::= x := e
| assume e
| s ; s
| s � s

VEX-IR Expression e ::= t
| r
| m
| c
| t � t
| t � c

Operator � ::= +| − | ∗ | ÷ | ∧ | ∨ | ⊕ |
� | � | = | 6= | < | ≤
> | ≥ | %

Assignment Value x ::= t | r | m
Temporary Variables t ∈ T

Registers File r ∈ R
Memory Array m ∈ M

Constants c ∈ Z

Table 3.2: A GCL-like syntax for specifying programs to apply predicate transformers
to derive weakest preconditions.

To compute the weakest precondition of the instructions in a gadget, we first lift

the VEX-IR statements to the GCL-like syntax in Table 3.2. Because the VEX-IR

statements are in SSA form, contain no conditional control-flow transfers, and have

been reduced to trace the effects of a single variable, the lifting process considers a

smaller subset of possible instructions. These include assignment, load, store, and

binary (arithmetic, logical, comparison) operations. Thus, translating to the GCL-

18

like syntax is trivial; for example:

t2 = Load(0x880123)

t1 = Add(t2, t3)

Store(t3) = t1

lifts to:

T [2] :=M[0x880123];

T [1] := T [2] + T [3];

M[T [3]] := T [1].

There is one exception for comparison operations (such as =, 6=, <, and ≤).

In this situation, both outcomes—true or false—need to be considered for computing

the weakest precondition. Given a comparison function in VEX-IR, Cmp(), a VEX-IR

statement t1 = Cmp(t2, t3) lifts to:

(assume (T [2] �c T [3]); T [1] := 1;) �

(assume ¬(T [2] �c T [3]); T [1] := 0;),

where �c is the corresponding comparison operator to Cmp().

After lifting the gadget instructions to GCL, we apply the semantics in Figure 3.2.

These are the predicate transformers as adapted by Brumley et al. (2007) for binary

program analysis. See Appendix A.6 for the Python source code implementation

which takes as input a sequence of statements in GCL syntax and postcondition, and

derives the weakest precondition according to the rules in Figure 3.2.

19

wp(x := e,Q) : Q[e/x]
WP-Assign

wp(assume e,Q) : e⇒ Q
WP-Assume

wp(s2, Q) : Q1 wp(s1, Q1) : Q2

wp(s1 ; s2, Q) : Q2

WP-Sequence

wp(s1, Q) : Q1 wp(s2, Q) : Q2

wp(s1�s2, Q) : Q1 ∧Q2

WP-Choice

Figure 3.2: Semantics for deriving weakest precondition of a GCL-like program.

3.2.1 Example Arithmetic Gadget Classification

Listing 3.7 presents an example gadget performing an ADD operation with a constant.

The VEX-IR statements in Listing 3.7 lift to the following GCL-like statements (ab-

breviated to s1; s2; s3) in Equation 3.1.

s1; s2; s3 =

T [5] :=M[0x805c7e8];

T [1] := T [5] + 2;

M[0x805c7e8] := T [1]

(3.1)

t5 = LDle:I32(0x0805c7e8)

t1 = Add32(t5,0x00000002)

STle(0x0805c7e8) = t1

Listing 3.7: VEX-IR example program slice demonstrating an arithmetic ADD gadget.

For this to be a valid arithmetic gadget, we derive a valid weakest precondition

for Equation 3.1 given a postcondition Q describing the semantics for an arithmetic

gadget. In this case Q is (M[0x805c7e8] = T [5] + 2), as this describes the desired

state of the program slice after the statements execute.

20

Figure 3.3 shows the application of the rules in Figure 3.2 on the gadget in Equa-

tion 3.1. The initial value of Q is (M[0x805c7e8] = T [5] + 2). The resulting weakest

precondition is a reflexive equality and is trivially valid, hence showing that the gadget

is indeed a valid arithmetic gadget.

wp(s1; s2, wp(s3, Q)) = wp(s1; s2, T [1] = T [5] + 2) (WP-Assign)

= wp(s1, wp(s2, T [1] = T [5] + 2)) (WP-Sequence)

= wp(s1, T [5] + 2 = T [5] + 2) (WP-Assign)

= (M[0x805c7e8] + 2 =M[0x805c7e8] + 2) (WP-Assign)

Figure 3.3: Application of weakest precondition derivation rules for example gadget
in Equation 3.1.

To classify gadgets of different types, we specify the postconditions presented in

Table 3.3. �a is an arithmetic binary operator; �` is a logical binary operator; and

�c is a comparison operator. In and Out represent parameters a gadget uses for

the two arguments to the Store instruction—the destination and value, respectively.

With the exception of Conditional or Comparison operations, these postconditions

resemble the MinDOP syntax presented in Table 3.1.

Name Parameters Postcondition
Move Out, In Out = In
Load Out, In Out =M[In]
Store Out, In M[Out] = In
Arithmetic Out, x, y Out = x �a y
Logical Out, x, y Out = x �` y
Conditional Out, x, y ((x�cy)⇒ Out = 1)∧

(¬(x�cy)⇒ Out = 0)

Table 3.3: Postconditions for verifying data-oriented gadget semantics.

21

3.3 Scope Inference and Optimizations for Classi-

fying Gadgets

Note that pointer information for the inputs is not included in Table 3.3. Since data-

oriented programming treats memory as virtual registers to carry out computation,

parameters In and Out must be pointers. Additionally, and in contrast to previous

work, this research deals with binary programs without source code. Thus, variable

information is not readily available and must be inferred. We gather this information

before deriving the weakest precondition through a forward pass through the gadget’s

instructions. Not only does this provide pointer dereferencing information, but it also

narrows the possible semantics that the gadget needs to be tested for, thus optimizing

the implementation.

The forward pass looks for assembly conventions using disassembly data or ar-

chitecture information provided by angr. With this, the forward pass identifies loads

from the base pointer or other argument registers (dependent on architecture). Then,

if the loaded value either loads again (dereferenced) or adds an offset and then loads

again, the variable is a potential “virtual register” for a DOP program.

The forward pass also infers variable scope information. If a Load instruction uses

a constant to load an address, the pass checks if the address falls within the bss or

data sections of the binary file. If so, then the variable is global. If a variable is

loaded from an address stored on the stack or in an argument register, the forward

pass checks if the offset added to the variable is positive or negative. Based on

architecture conventions, a positive or negative offset indicates the variable is either

a function parameter or a local variable.

Additionally, the forward pass makes note of how many times each variable in

a program slice is dereferenced. This information, combined with scope, provides

details about a gadget to be able to stitch it together with other gadgets and allow

22

an attacker to perform arbitrary computation.

For example, the VEX-IR in Listing 3.8 presents two variables of interest—t34

and t38. The forward pass scope inference algorithm determines that t34 is a global

variable because it loads from a memory address in the program’s data section in

Line 5. It also infers that t38 is a local variable that’s been dereferenced at least

once. The forward pass determines this from Lines 1–4; here, the instructions add a

negative offset to the address pointed to by the base pointer. Then, the value at the

location is loaded, then loaded again. Through this inference process, the forward

pass algorithm identifies the parameters for each potential gadget (as specified in

Table 3.3) and prepares them for the verification step in Section 3.2.

1 t33 = GET:I32(offset=28) # 28 is EBP

2 t35 = Add32(t33, 0xffffffe0)

3 t37 = LDle:I32(t35)

4 t38 = LDle:I32(t37)

5 t34 = LDle:I32(0x805c7e8)

6 STle(t34) = t38

Listing 3.8: VEX-IR example program slice demonstrating two examples of variable
scope inference in VEX-IR. t34 is a global variable, and t38 is a local variable.

3.4 Automating Gadget Classification and Verifi-

cation

To automate gadget classification, we consider each potential gadget, run the forward

pass to identify variables and their scopes in each program slice, compute the weakest

precondition for each relevant gadget type and check the validity of the weakest pre-

condition using the SMT solver Z3 (De Moura & Bjørner 2008). Thus, for a program

slice S and postcondition Q, if the computed weakest precondition wp(S,Q) is valid,

then the gadget is verified to express the semantics defined in the postcondition Q.

23

This is repeated for each potential gadget found by the algorithm in Listing 3.6.

3.5 Identifying Gadget Dispatchers

Similar to Hu et al. (2016) we identify gadget dispatchers by finding data-oriented

gadgets either within the bodies of loops or that are reachable from the body of a

loop—that is, there is a path along the call graph from a function call in the loop

body to the gadget. These loops are the dispatchers.

3.6 Reachability Analysis

The next step after identifying and classifying data-oriented gadgets is to determine

their reachability from a vulnerable function. Since a DOP attack originates from a

memory corruption, it is necessary that the gadgets used in the attack are reachable

from that vulnerable function. We determine reachability in a manner similar to Hu

et al. (2016) by capturing a dynamic function call trace of the program running with

input that triggers the vulnerable function. Given the function call trace, we identify

the functions invoked by the vulnerable function, and the loops surrounding the

vulnerable function. We label the gadgets inside the invoked functions and enfolding

loops as reachable from the dispatcher.

This completes all three phases of the methodology for classifying data-oriented

gadgets in binaries as introduced at the beginning of this chapter. In total, this

methodology describes a verified whole-program data-oriented gadget classification

technique for general binaries. It can be applied to any architecture and requires no

source code for analysis, utilizing data-flow analysis and program verification tech-

niques to identify gadgets, verify their semantics, and determine if they can be trig-

gered by vulnerable program points in a binary.

24

Chapter 4

Results

We implement the data-oriented gadget classification methodology for binary pro-

grams using Python 2.7.9 and the “angr” binary program analysis framework (Shoshi-

taishvili et al. 2016). The tool’s name is Doggie—Data-Oriented Gadget Identifier.

Please refer to the Appendix for the corresponding source code for key algorithms and

formalisms. Doggie identifies and verifies the semantics of data-oriented gadgets in

binary programs. The tool leverages the SMT solver Z3 (De Moura & Bjørner 2008)

for verification. Once the tool classifies a data-oriented gadget it also reports the

reachable loop, or dispatcher, from that gadget.

Additionally, the tool determines the reachability of gadgets to vulnerable func-

tions in a binary program. This process first leverages Intel’s Pin (Luk et al. 2005),

a dynamic binary instrumentation tool, to capture a function trace of the target pro-

gram executing with input that triggers a vulnerable function. Given such a function

trace, Doggie labels the discovered gadgets that are invoked by the functions in the

trace as reachable—meaning it is possible to trigger these gadgets from the vulnerable

function.

The implementation of Doggie has one primary limitation with regards to gad-

get classification. Doggie does not verify gadgets that exhibit “complex” semantics.

25

We define “complex” as having more than two movement operations (assignment

or dereference) and more than one binary operation (arithmetic, logical, or condi-

tional). Although this implementation decision omits certain data-oriented gadgets,

it is practical. Gadgets with long sequences of instructions performing multiple kinds

of micro-operations are difficult to stitch together because there are more side effects

to account for.

4.1 Evaluation

To evaluate how accurately Doggie classifies data-oriented gadgets in binary pro-

grams we compare the classification results of the tool with Hu et al. (2016)’s source-

based gadget discovery tool. Hu et al. (2016)’s gadget discovery tool uses LLVM

version 3.5.0 (Lattner & Adve 2004). We choose open-source programs for evaluation

to compare results using both tools. The experimental setup consists of a host com-

puter with an Intel x86 32-bit processor running Debian 8.10 on Linux kernel version

3.16. We compile each program using GCC 4.9.2 and Clang 3.5.0. The source-based

tool from Hu et al. (2016) requires the programs to be compiled with Clang since it

uses LLVM.

The selected programs include:

• curl—a tool that transfers data to or from a server using network protocols;

• imlib2—a graphics library for loading, saving, and rendering image files into

different formats;

• libtiff—a library for reading and writing TIFF image files on Linux systems;

• nginx—an HTTP web server;

• optipng—a PNG file optimizer that compresses images;

26

• sudo—a system utility that allows users to run programs with elevated security

privileges;

• unzip—a tool for extracting files from zip archives.

In addition to reporting classification results for data-oriented gadgets, the evalu-

ation also reports gadget reachability for a given vulnerability. To do this we collect

a function trace of the program running with a proof-of-concept exploit that triggers

a disclosed vulnerability. The vulnerabilities for each program come from the CVE

(Common Vulnerabilities and Exposures) database (CVE 2018). Because the source-

based tool from Hu et al. (2016) does not report gadget reachability, we only provide

reachability results of the binary programs using Doggie.

4.2 Classification Results

Table 4.1 presents the results of data-oriented gadget classification for binary and

source-based programs using Doggie and Hu et al’s LLVM pass, respectively. The

table classifies gadgets according to two dimensions—semantics and scope. Semantics

are the type of micro-operations that the gadgets simulate. Scope defines the context

of the parameters for the gadget. For gadget scopes, ‘G’ is Global, ‘H’ is Hybrid

(mixed between global and local), and ‘L’ is Local. For instance, a local gadget uses

parameters that are locally scoped—modifications to these variables are limited to

the scope of the function. A global gadget uses parameters that have global scope.

An attacker can persist changes to these global variables and stitch gadgets together

using the modified value of one gadget as input to a successive gadget. “Hybrid” scope

gadgets consist of at least one local parameter and one global parameter. Additionally,

each program has three entries—(1) the binary program compiled with GCC; (2) the

binary program compiled with Clang; (3) and the source-code program compiled with

Clang used with the LLVM pass by Hu et al. (2016).

27

Application Version Binary/Source Compiler Dispatchers
Assign Deref Arith Logic Cond

G H L G H L G H L G H L G H L

curl 7.41.0
B GCC 71 99 143 27 62 25 559 36 303 16 5 0 0 1 0 0
B Clang 76 349 311 1 87 27 53 16 318 1 6 2 0 3 0 0
S Clang 11 0 2 15 0 2 26 2 0 5 1 2 17 0 0 4

imlib2 1.4.7
B GCC 734 440 275 0 220 101 633 1208 256 137 65 19 15 4 4 0
B Clang 835 934 721 3 180 86 65 262 223 22 33 29 9 0 0 0
S Clang 152 1 5 55 25 183 94 12 96 390 3 219 411 3 1 19

libtiff 2.5.6
B GCC 358 264 309 7 226 99 578 328 161 52 6 16 19 0 2 0
B Clang 374 451 290 35 87 175 5 148 179 5 15 11 1 1 0 0
S Clang 116 2 9 83 0 62 333 1 79 243 0 35 183 0 5 20

nginx 1.4.0
B GCC 499 1316 526 1 333 190 87 276 440 9 97 2 4 3 0 0
B Clang 496 1104 497 11 378 328 114 225 426 14 83 11 3 4 0 0
S Clang 206 12 55 74 32 40 958 12 26 156 28 7 290 3 7 22

optipng 0.7.6
B GCC 219 167 165 4 45 76 208 183 260 45 24 5 1 3 2 0
B Clang 249 244 114 13 19 42 38 144 235 8 23 1 1 1 0 0
S Clang 63 35 35 73 10 1 245 11 35 283 17 25 146 4 4 69

sudo 1.8.3p1
B GCC 91 129 123 127 10 45 92 21 317 101 11 0 9 3 0 0
B Clang 65 103 44 1 13 15 12 14 239 0 12 0 0 3 0 0
S Clang 16 11 0 9 11 5 8 3 0 9 5 2 0 3 0 0

unzip 6.0
B GCC 209 133 204 32 68 43 136 194 218 13 16 12 2 1 0 0
B Clang 182 215 32 0 21 11 12 161 139 2 8 0 3 1 0 0
S Clang 28 45 14 4 146 6 1 147 4 7 72 2 0 34 2 0

Table 4.1: Data-oriented gadget identification results.

The data in Table 4.1 demonstrates inconsistency in classifying data-oriented gad-

gets between programs with and without source code and between programs compiled

with different compilers. With the exception of conditional gadgets in “sudo,” there

is no other case where gadget classification agrees in semantics or scope for the three

cases (binary with GCC; binary with Clang; and source-code with Clang and LLVM).

For other cases such as “curl” conditional gadgets, the scope results between

the binary and source versions do not match. The binary versions report global

conditional gadgets with zero hybrid and local gadgets. The source version reports

zero global conditional gadgets with only local gadgets. For each of the programs,

despite the fact that Doggie omits classifying complex gadgets, it classifies more

gadgets than the source-based analysis for a majority of Assignment, Dereference,

and Arithmetic semantics.

If scope were removed from the data and Table 4.1 only presented total gadget

numbers, the results would still vary in almost every case. Furthermore, there is as

much of a difference between compilers as there is between binary and source-based

analysis.

Table 4.2 presents statistics on discovered gadgets for each program. As Doggie

and Hu et al’s LLVM pass use different intermediate languages and operate exclusively

28

in either binary or source, Table 4.2 only reports statistics collected by Doggie for

binary versions of the programs. Gadget length is the number of instructions in a

gadget. Gadget parameters is the number of parameters the gadget controls.

Due to Doggie’s limitations on gadget complexity, mean and median gadget pa-

rameter counts are two (with the exception of “optipng” compiled with GCC and

“sudo” compiled with Clang, where mean is three). For a majority programs, the

mean, median, and minimum statistics for each category between compilers are within

±3 of each other. This shows some consistency between compiled versions of a pro-

gram. Maximum statistics tend to vary the most, especially for “gadgets per function”

and “gadgets per dispatcher.” Between compilers and programs, gadget length is con-

sistent and varies by one or two—with GCC gadgets consistently being longer than

Clang gadgets.

Application Compiler
Gadget Length Gadget Parameters Gadgets per Function Gadgets per Dispatcher

Mean Median Min Max Mean Median Min Max Mean Median Min Max Mean Median Min Max

curl
GCC 7 7 3 18 2 2 2 4 9 1 4 553 27 4 1 672
Clang 5 5 2 17 2 2 2 4 9 4 1 495 27 5 1 592

imlib2
GCC 7 7 4 29 2 2 2 5 11 4 1 223 12 7 1 527
Clang 6 6 4 17 2 2 2 4 7 2 1 104 9 2 1 673

libtiff
GCC 8 7 4 23 2 2 2 5 7 3 1 257 9 3 1 539
Clang 7 6 4 18 2 2 2 6 8 4 1 185 7 2 1 124

nginx
GCC 6 6 3 26 2 2 2 6 7 4 1 93 10 4 1 471
Clang 6 6 3 26 2 2 2 6 7 4 1 107 9 3 1 448

optipng
GCC 7 7 4 33 3 2 2 9 7 4 1 96 11 3 1 254
Clang 6 6 3 31 2 2 2 10 8 4 1 69 6 2 1 122

sudo
GCC 6 5 2 18 2 2 2 4 7 4 1 75 14 4 1 126
Clang 5 5 2 14 3 3 2 4 5 4 1 48 11 5 1 58

unzip
GCC 7 6 4 28 2 2 2 7 10 4 1 81 12 2 1 296
Clang 5 4 2 27 2 2 2 7 8 4 1 109 10 2 1 112

Table 4.2: Data-oriented gadget statistics collected by Doggie.

4.3 Reachability Results

Table 4.3 presents the results of data-oriented gadget reachability given a vulnerable

function trace for binary programs using Doggie. Similar to the classification results

table (Table 4.1), Table 4.3 organizes gadgets by semantics and scope. Additionally,

for each program, to produce a vulnerable function trace we trigger a disclosed vul-

nerability. The table also lists the CVE number for the vulnerability. We only present

29

reachability results for binary programs using Doggie because the source-based tool

from Hu et al. (2016) does not report reachability given a function trace.

Application CVE Compiler Dispatchers
Assign Deref Arith Logic Cond

G H L G H L G H L G H L G H L

curl 2015-31441 GCC 5 0 4 0 0 1 1 0 52 0 0 0 0 0 0 0
Clang 8 0 4 0 0 0 2 0 56 0 0 0 0 0 0 0

imlib2 2016-39942 GCC 12 7 6 0 7 3 17 3 36 0 0 0 4 0 0 0
Clang 14 18 7 0 0 6 6 1 28 0 0 0 0 0 0 0

libtiff 2017-99353 GCC 16 13 26 0 13 0 48 5 36 11 1 0 1 0 0 0
Clang 14 16 9 0 5 3 2 7 9 0 2 0 0 0 0 0

nginx 2013-20284 GCC 69 370 136 1 54 49 19 71 49 0 50 0 0 2 0 0
Clang 77 297 110 0 80 51 18 44 44 0 28 3 1 1 0 0

optipng 2016-39825 GCC 3 0 3 1 0 0 0 0 28 0 0 0 0 0 0 0
Clang 4 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0

sudo 2012-08096 GCC 5 23 4 1 2 0 2 0 0 0 0 0 0 1 0 0
Clang 9 20 0 0 1 0 2 1 0 0 12 0 0 0 0 0

unzip 2015-76967 GCC 6 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0
Clang 6 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0

Table 4.3: Data-oriented gadget reachability results with respect to a vulnerable
function trace through a reported vulnerability from the CVE database (CVE 2018).

Again, the reachability results in Table 4.3 show a lack of consistency within

programs and between compilers. Each program does not have the same reach-

able gadgets depending on the compiler. Additionally, not every classified gadget

is reachable from the chosen vulnerability. Each program has reachable gadgets in

at least one semantics category. “nginx” and “sudo” have reachable gadgets for all

semantics. “curl,” “imlib2,” and “libtiff” at least have assignment, dereference, and

arithmetic gadgets—which according to Hu et al. (2016) is sufficient for constructing

Turing-complete DOP attacks. “nginx” reports the highest number of reachable gad-

gets compiled with either GCC and Clang. From these results, reachability depends

closely on the vulnerability present in the program and the frequency and type of

gadgets present.

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3144
2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3994
3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9935
4https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
5https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3982
6https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809
7https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7696

30

4.4 Case Studies

We choose three programs to investigate classification and reachability results. These

case studies detail the differences in data-oriented gadget classification between com-

pilers and between binary and source-based program analysis. To demonstrate a

variety of application types the case studies use a systems utility (sudo), a file de-

compression tool (unzip), and an HTTP server (nginx).

4.4.1 sudo

The system utility “sudo” demonstrates the differences between binary and source-

based analysis for data-oriented gadget classification. First, Figure 4.1 shows an

example of equivalent gadget classification across compilers and between source and

binary analyses. The figure presents three instruction traces that correspond to the

same conditional-type gadget. The binary-based instruction traces use VEX-IR as

the intermediate language. The source-based instruction trace uses LLVM-IR. Aside

from using different global addresses and temporary variable names, the binary-based

gadgets are syntactically and semantically equivalent across compilers. The binary

and source-based instruction traces are semantically but not syntactically equivalent.

Table 4.4 compares the classification results for this gadget across all test cases.

The results show that classification is equivalent for this gadget. Note that although

the binary instruction traces in Figure 4.1 do no explicitly reference foreground

and ppgrp, the binary program’s data and bss sections in the disassembly map the

addresses to the names of these global variables.

Binary, GCC (Doggie) Binary, Clang (Doggie) Source, Clang (LLVM)
Semantics Conditional (=) Conditional (=) Conditional (=)

Address Parameters foreground (Global) foreground (Global) foreground (Global)
Data Parameters ppgrp (Global) ppgrp (Global) ppgrp (Global)

Table 4.4: Comparison of results for conditional gadget in “sudo”.

Figure 4.2 is an example of a gadget that is not classified equivalently across

31

Binary; compiled with GCC
t17 = LDle:I32(0x0805bb30)
t3 = GET:I32(offset=8)
t45 = CmpEQ32(t3,t17)
t44 = 1Uto32(t45)
t24 = t44
t46 = 32to1(t24)
t19 = t46
t47 = 1Uto8(t19)
t18 = t47
t48 = 8Uto32(t18)
t25 = t48
STle(0x0805bb20) = t25

Binary; compiled with Clang
t2 = GET:I32(offset=8)
t1 = LDle:I32(0x08058b18)
t47 = CmpEQ32(t2,t1)
t46 = 1Uto32(t47)
t20 = t46
t48 = 32to1(t20)
t15 = t48
t49 = 1Uto8(t15)
t14 = t49
t50 = 8Uto32(t14)
t21 = t50
STle(0x08058b14) = t21

Source; compiled with Clang
%63 = load i32* @ppgrp
%64 = icmp eq i32 %62, %63
%65 = zext i1 %64 to i32
store i32 %65, i32* @foreground

Figure 4.1: Conditional gadgets in “sudo”.

platforms—showcasing some of the limitations of binary-based analysis. The consid-

ered gadget is an arithmetic-type gadget found in the perform io function of “sudo.”

Indeed, in this example the Clang-compiled binary does not find the same Store in-

struction that corresponds to this gadget in any part of the function body—nor does

it find any viable Store instructions to classify any gadget within the whole function.

Thus, Figure 4.2 only shows the GCC-compiled binary and source-based instruction

traces.

Table 4.5 shows that both classification methods choose the same type, but the

parameters differ in scope. Based on the forward-pass scope inference technique pre-

sented in Section 3.3, Doggie determines that the parameters are local and distinct.

However, the LLVM pass by Hu et al. (2016) uses the provided source code informa-

tion to correctly identify the parameters as the same global data structure io bufs.

This semantic information is not available in the binary.

Additionally, the GCC-compiled binary version of “sudo” finds an extra derefer-

enced assignment gadget in the perform io function that the source-based analysis

does not find. Figure 4.3 presents the instruction trace for this gadget.

32

Binary; compiled with GCC
t9 = GET:I32(offset=28)
t8 = Add32(t9,0xffffffec)
t10 = LDle:I32(t8)
t11 = Add32(t10,0x00000004)
t13 = LDle:I32(t11)
t15 = Add32(t9,0xfffffff4)
t3 = LDle:I32(t15)
t2 = Add32(t13,t3)
t17 = Add32(t9,0xffffffec)
t19 = LDle:I32(t17)
t20 = Add32(t19,0x00000004)
STle(t20) = t2

Source; compiled with Clang
%iob.028 = load %struct.io_buffer** @iobufs
%iob.030 = phi %struct.io_buffer* [%iob.0, %.loopexit],

[%iob.028, %.lr.ph.preheader]
%13 = getelementptr inbounds %struct.io_buffer* %iob.030,

i32 0, i32 1
%48 = load i32* %13
%49 = add nsw i32 %48, %.lcssa
store i32 %49, i32* %13

Figure 4.2: Dereferenced arithmetic gadgets in the perform io function in “sudo”.

Binary, GCC (Doggie) Binary, Clang (Doggie) Source, Clang (LLVM)
Semantics Dereference, Arithmetic (+) - Dereference, Arithmetic (+)

Address Parameters *t19 (Local) - iobufs (Global)
Data Parameters t3 (Local), *t11 (Local) - iobufs (Global)

Table 4.5: Comparison of results for arithmetic gadget in the perform io function in
“sudo.”

4.4.2 unzip

The classification results for “unzip” highlight differences between compilers. Figure

4.4 presents an example of an arithmetic gadget across all three evaluation platforms.

The Clang-compiled instruction traces express the semantics of the gadget in fewer

instructions than the GCC-compiled version. The first instruction loads a global

variable, the following instruction adds one to the variable, and the final instruction

stores the new value back into the same global address.

Instead of directly referencing the global address, the GCC-compiled instruction

trace references the data as a function parameter. It accesses the pointer to the data

through an offset to the stack pointer register (esp + 0x84). Table 4.6 presents the

33

Binary; compiled with GCC
t0 = GET:I32(offset=8)
t13 = LDle:I32(t0)
t15 = GET:I32(offset=28)
t14 = Add32(t15,0x00000010)
t16 = LDle:I32(t14)
t17 = Add32(t16,0x00000004)
STle(t17) = t13

Figure 4.3: Extra Dereference-Assignment gadget in perform io function in GCC-
compiled “sudo”.

Binary; compiled with GCC
t15 = GET:I32(offset=24)
t14 = Add32(t15,0x00000084)
t16 = LDle:I32(t14)
t5 = LDle:I32(t16)
t3 = Add32(t5,0x00000001)
STle(t16) = t3

Binary; compiled with Clang
t4 = LDle:I32(0x0813c298)
t5 = Add32(t4,0x00000001)
STle(0x0813c298) = t5

Source; compiled with Clang
%86 = load i32* getelementptr inbounds

(%struct.Globals* @G, i32 0, i32 0, i32 7)
%91 = add nsw i32 %86, 1
store i32 %91, i32* getelementptr inbounds

(%struct.Globals* @G, i32 0, i32 0, i32 7)

Figure 4.4: Arithmetic gadgets in “unzip”.

classification results for this example. The primary difference is the scope and identity

of the parameters between the compilers. Through purely static analysis, Doggie

cannot infer that the value loaded in t16 is the global variable G.

Binary, GCC (Doggie) Binary, Clang (Doggie) Source, Clang (LLVM)
Semantics Arithmetic (+) Arithmetic (+) Arithmetic (+)

Address Parameters t16 (Function Param.) G (Global) G (Global)
Data Parameters t16 (Function Param.) G (Global) G (Global)

Table 4.6: Comparison of results for arithmetic gadget in the uz opts function in
“unzip.”

4.4.3 nginx

The reachability results for “nginx” are suitable for building a data-oriented pro-

gramming exploit given the chosen vulnerability and the greater number of reach-

34

able gadgets compared to the other programs in the evaluation. The vulnerability

(CVE 2013-2028) occurs when “nginx” processes a chunked transfer-encoded HTTP

request. When parsing a large-enough chunked request, it is possible to trigger an

integer signedness error and overflow a buffer on the stack.

Figure 4.5 shows the two data-oriented gadgets that exploit the signedness error.

Both gadgets simulate dereferenced assignment operations. To demonstrate their

semantic relation, Listing 4.1 presents the corresponding source code. This is part

of the function ngx http discard request body filter which “nginx” calls if the

HTTP request is “chunked.” This in turn calls ngx http parse chunked on line 2,

which contains the integer signedness vulnerability. The assignment in line 6 contains

both gadgets from Figure 4.5. Thus, these gadgets are reachable from the vulnerable

function and controllable from the dispatcher in line 1.

Gadget 1
t9 = GET:I32(offset=32)
t8 = Add32(t9,0x0000001c)
t10 = LDle:I32(t8)
t11 = Add32(t10,0x00000010)
t13 = LDle:I32(t11)
t18 = GET:I32(offset=36)
t17 = Add32(t18,0x000000e0)
STle(t17) = t13

Gadget 2
t9 = GET:I32(offset=32)
t8 = Add32(t9,0x0000001c)
t10 = LDle:I32(t8)
t14 = Add32(t10,0x0000000c)
t16 = LDle:I32(t14)
t18 = GET:I32(offset=36)
t20 = Add32(t18,0x000000dc)
STle(t20) = t16

Figure 4.5: Two dereferenced assignment gadgets in “nginx.”

1 for (;;) {

2 rc = ngx_http_parse_chunked(r, b, rb->chunked);

3 ...

4 if (rc == NGX_AGAIN) {

5 /* Two dereferenced assignment gadgets */

6 r->headers_in.content_length_n = rb->chunked->length;

7 break;

8 }

9 ...

Listing 4.1: Vulnerable code snippet in the function
ngx http discard request body filter in “nginx.”

Table 4.7 presents the properties of the gadget parameters. Address Assembly

35

and Data Assembly reference the assembly instructions that build the parameters—

normally a register plus an offset, composed by dereferencing. Address Source and

Data Source reference the variable names in the source code from Listing 4.1. Note

that r->headers in.content length n and rb->chunked->length are of type off t.

Because “nginx” is compiled with D FILE OFFSET BITS=64, the compiler forces vari-

ables of type off t to be 64-bits in size. Thus, the resulting code in the 32-bit bi-

nary splits the assignment for r->headers in.content length n between two data-

oriented gadgets, each handling the data in four-byte chunks. It follows that both

gadgets deal with semantically identical parameters. The difference being that the

offsets differ by four bytes between the Address Assembly and Data Assembly rows,

respectively.

Gadget 1 Gadget 2
Address Parameter t17 t20

Address Scope Function Parameter Function Parameter
Address Assembly edi + 0xe0 edi + 0xdc

Address Source r->headers in.content length n r->headers in.content length n

Data Parameter t13 t16

Data Scope Function Parameter Function Parameter
Data Assembly [[esi + 0x1c] + 0x10] [[esi + 0x1c] + 0xc]

Data Source rb->chunked->length rb->chunked->length

Table 4.7: Parameter details for the data-oriented gadgets from Figure 4.5 found in
“nginx.”

A data-oriented programming exploit for “nginx” uses these two dereferenced

assignment gadgets as follows. First, an attacker sends a chunked HTTP request

to a server running “nginx.” The request is large enough that it fills the 1024

bytes of the first read and sets rc to NGX AGAIN (line 4 of Listing 4.1). This also

sets rb->chunked->length to a large number. Then, the data-oriented gadgets

execute in line 6. Because the destination of the store is a signed type, off t,

r->headers in.content length n becomes negative from the large value in

rb->chunked->length. Next, ngx http parse chunked executes a second time and

the attacker sends over 4096 bytes, overflowing a vulnerable buffer on the stack. This

36

sets up the attacker to write arbitrary data to the stack and execute shellcode or even

launch a return-oriented programming attack (as described in Vu (2013)).

4.5 Discussion

Doggie classifies data-oriented gadgets using program analysis and verification tech-

niques. Evaluating how Doggie classifies gadgets compared to source-based analysis

shows that it is viable for verifying short, foundational gadgets capable of delivering

data-oriented programming exploits. Still, due to the lack of semantic information

in binary-based analysis techniques Doggie does not classify the same gadgets as

source-based analysis. Additionally, it cannot classify complex data-oriented gadgets.

Even within the scope of binary-based analysis, gadget classification differs between

compilers. The following addresses classification differences between compilers and

the implications of omitting complex gadget classification.

4.5.1 Classification between Compilers

Gadget classification results differ between compilers due to how the compilers emit

code. This affects the type and frequency of gadgets found in binaries. For instance,

the “unzip” example in Section 4.4.2 shows one of the larger differences in classifi-

cation results between Clang and GCC. The source code for the uz opts function,

which handles command line parameters, makes 30 modifications (some conditional)

to a global data structure uO that stores unzip options. This is evident in the Clang

classification results with a set of global gadgets in the uz opts function. However,

the GCC-compiled version is optimized in such a way that these operations do not

form valid data-oriented gadgets.

This discrepancy points towards a systematic difference in how the compilers emit

code and how the resulting code can be used in data-oriented gadgets. Recall that

37

there are three components to every data-oriented gadget: (1) parameter loading; (2)

the simulated micro-operation (the “body” of the gadget); and (3) the final Store

instruction. The following explores how differences in compilation can affect these

three components.

Because every data-oriented gadget ends with a Store instruction, their presence

and frequency is crucial for gadget discovery. Table 4.8 presents the total number of

Store instructions for each program compiled under GCC and Clang. ∆ is the rela-

tive difference between the counts for each compiler. “imlib2” and “unzip” show the

largest relative difference between Store instruction counts. From Table 4.1, “unzip”

indeed has 77.2% more total gadgets compiled under GCC than Clang. This is also

confirmed in the mean “gadgets per function” and “gadgets per dispatcher” statis-

tics in Table 4.2. However, this does not correspond to higher gadget frequency for

a particular compiler. “imlib2”, having 28.8% more store instructions under Clang

than GCC, has 24% fewer total gadgets under Clang. Hence, the frequency of Store

instructions does not consistently influence overall classification results between com-

pilers.

curl imlib2 libtiff nginx optipng sudo unzip
GCC 6564 20555 19967 36813 12706 5450 11451

Clang 6090 28869 20434 38524 12548 5142 9755
∆ 7.2% 28.8% 2.2% 4.4% 1.2% 5.9% 14.8%

Table 4.8: Comparison of the number of Store instructions in each binary program
compiled under GCC and Clang.

The gadget body is the sequence of instructions that determines the semantics

of the micro-operation a gadget simulates. The length of a gadget body influences

its complexity. The gadget statistics in Table 4.2 show that GCC on average emits

code with longer gadgets than Clang by 16.4%. Due to the limitation on Doggie

classifying complex gadgets, this may account for some misses in the GCC-compiled

programs.

38

The remaining aspect considers how gadgets load parameters. The compiler in-

fluences each gadget by the code generation schemes it uses to load parameters from

memory. Table 4.9 presents statistics on parameter-loading patterns for each program

compiled under GCC and Clang. The three schemes it considers are (1) loading from

a register (eax, ebx, ecx, edx, esi, edi); (2) loading from the stack (through ebp or

esp); and (3) loading directly from memory (constant address).

Application Compiler Registers Stack Constant

curl
GCC 2519 485 0
Clang 1525 1207 16

imlib2
GCC 9005 8319 0
Clang 8216 8742 0

libtiff
GCC 4203 2797 0
Clang 2993 2940 0

nginx
GCC 5176 3559 93
Clang 4904 3629 93

optipng
GCC 3558 1560 0
Clang 2236 1076 34

sudo
GCC 1208 1266 102
Clang 948 271 62

unzip
GCC 2348 1373 0
Clang 828 497 367

Table 4.9: Comparison of parameter-loading strategies for gadgets in each program
compiled under GCC and Clang.

Overall, both compilers prefer loading from registers. Aside from this, there is no

general pattern distinguishing the two compilers. The differences are individual to

each program. The previously explored “unzip” example highlights the gap between

global variable classification between Clang and GCC. For Clang, the gadgets use

a total of 367 constant-addressed parameters—whereas GCC reports zero. In these

cases, these constant parameters are globally addressed and thus account for the large

discrepancy between global gadgets. In general, an increase in constant-addressed

parameters leads to an increase in globally classified gadgets.

How a compiler emits code affects the three components of a data-oriented gad-

get, thus influencing classification. However, what is not known are the rules and

39

optimizations that differ between compilers that affect the kinds of gadgets available.

Ultimately, this means that the same gadgets are not guaranteed to be available for

the same program across different compilers. Furthermore, this analysis shows that a

data-oriented programming exploit developed for a binary under one compiler is not

guaranteed to work under a different one. For defense, it also means that the degree

of vulnerability—that is, how expressive of a DOP attack can be crafted—depends

on how the program is compiled.

4.5.2 Simple versus Complex Gadgets

To understand the implications of omitting complex gadget identification in Doggie,

Table 4.10 compares the number of verified gadgets versus the number of “potential”

complex gadgets in each application. “Potential Gadget Total” includes all instruction

sequences considered for classification. Doggie identifies potential complex gadgets

by counting the number of types of arithmetic, logical, and conditional operations in

a gadget’s program slice. This approximates the actual number of complex gadgets

in a program as it would require verification to know the true count.

Application Compiler Verified Gadget
Count

Potential Complex
Gadget Count

Potential Gadget
Total

Verified Gadget
Proportion

Complex Gadget
Proportion

curl
GCC 1276 14 1298 98% 1%
Clang 1174 13 1197 98% 1%

imlib2
GCC 3377 1516 5048 67% 30%
Clang 2567 1976 4717 54% 42%

libtiff
GCC 2067 410 2572 80% 16%
Clang 1403 479 1985 71% 24%

nginx
GCC 3284 285 3697 89% 8%
Clang 3198 259 3615 88% 7%

optipng
GCC 1188 288 1582 75% 18%
Clang 883 193 1125 78% 17%

sudo
GCC 988 49 1056 94% 5%
Clang 456 22 486 94% 5%

unzip
GCC 1072 228 1350 79% 17%
Clang 605 100 722 84% 14%

Table 4.10: Comparison of verified data-oriented gadget totals and potential complex
gadgets that are omitted by Doggie.

The results in Table 4.10 show that the chosen programs have a majority of

simple gadgets over complex ones. Applications like “curl” and “sudo” are made up

40

of over 90% simple gadgets. There is also not a large difference (less than 10 points)

between gadget proportions between compilers. The one exception being “imlib2”

which has the largest proportion of potential complex gadgets at 42%. This may

suggest that libraries have more complex gadgets in general. For “sudo” and “unzip,”

there is a large difference (46%–53%) in gadget totals between compilers, but the

proportion of complex gadgets remains low. Thus, based on the chosen applications

in this evaluation, Doggie remains useful for data-oriented gadget classification in

most cases. Some types of applications, such as libraries, may exhibit more complex

gadgets than simple. However, even “imlib2” and “libtiff” contain multiple instances

of assignment, dereference, and arithmetic gadgets (from Table 4.1) which is more

than sufficient for crafting Turing-complete attacks (Hu et al. 2016).

The methodology presented in this work supports implementing complex data-

oriented gadget verification; the process for computing the weakest precondition is

the same. Extending Doggie to support complex gadget classification is a mat-

ter of identifying all of the relevant parameters and generating complex postcondi-

tions. These complex postconditions are simple predicates composed together (such

as Move, Load, Arithmetic, etc. from Table 3.3). The difficulty comes in identi-

fying which parameters fit to which variables in the postcondition predicate. There is

no general method to do this. Trying all possible combinations leads to exponential

computational complexity. A heuristic solution may analyze the operations used in

a gadget and assign variables to operation types based on their usage (similar to the

forward-pass analysis in Section 3.3).

41

Chapter 5

Conclusions

This thesis presents a methodology for classifying data-oriented gadgets in binary

programs without source code. This is in contrast to current techniques that rely on

source-based analysis. However, gadget classification without source code introduces

difficulties due to the missing semantic information. To overcome this, this method-

ology uses a combination of data-flow and binary program analysis techniques for

identification and formal methods for verification. Formal methods provide a guar-

antee of validity about the classification results.

Doggie (Data-Oriented Gadget Identifier) is the prototype implementation of

this classification methodology. This is a tool written in Python that, given a binary

program, classifies data-oriented gadgets and determines their reachability with re-

spect to a vulnerable function trace. Through the evaluation of a suite of programs,

Doggie successfully classifies short, data-oriented gadgets capable of building data-

oriented programming attacks. Comparing the classification results of Doggie to a

source-based analysis—an LLVM pass by Hu et al. (2016)—shows some differences in

gadget discovery. This is due to binary-based analysis missing semantic information

like variable typing and pointers. Information like this helps to accurately identify

gadget parameters. In binary-based analysis, this information is either partially re-

42

covered, approximated, or lost.

Furthermore, classification results also differ between programs under different

compilers. This is due to how the compiler emits code. GCC and Clang use different

conventions for loading function parameters and accessing global data which affects

how gadget parameters are identified. In turn, this impacts the type and frequency

of gadgets discovered in the same program compiled under different compilers. Thus,

for practical data-oriented gadget analysis, the compiler must be considered. In this

sense, the source-based analysis by Hu et al. (2016) is limited by the fact it uses

LLVM for classification which limits analysis to Clang-compiled software. Exploits

crafted using this information are not guaranteed to work on binaries under differ-

ent compilers. From a security standpoint, this also hampers the awareness of how

vulnerable a program is to data-oriented programming attacks. The source-based

method does not consider the different compiler conventions and optimizations that

ultimately affect the kinds of gadgets discoverable in the final binary.

Doggie, on the other hand, supports classification for software under any com-

piler. However, this comes at the cost of classification accuracy (due to the loss of

semantic information). Despite this, the formally verified binary-based data-oriented

gadget classification methodology and prototype implementation expand the scope

of programs that can be analyzed for this class of exploit—including “common-off-

the-shelf” binaries, closed-source binaries, and legacy programs. Over the previous

source-based LLVM pass, Doggie provides gadget classification and reachability re-

sults that reflect the kinds of gadgets available by considering how the program was

compiled.

Accurately classifying data-oriented gadgets in software is critical for assessing se-

curity vulnerabilities against data-only attacks. With this methodology and software

prototype, security analysts can assess any generic binary for data-oriented gadgets

and determine if a vulnerable function can trigger them. Furthermore, because the

43

methodology uses formal verification it provides a degree of guarantee about gadget

properties and their reachability. As defenses against control-flow hijacking attacks

become more widespread, data-only exploits become more viable attack vectors. In

response, this research presents a solution that analyzes any generic binary for the

building blocks of data-oriented programming attacks.

5.1 Related Work

Previous research has explored using program verification techniques to classify Return-

oriented gadgets. Schwartz et al. (2011) developed a return-oriented programming

exploit compiler that takes as input a binary program and an “exploit” program (writ-

ten in a language similar to MinDOP in Table 3.1). It then uses program verification

techniques to find suitable gadgets and compiler techniques to stitch them together

and output a payload.

Previous work also explores defenses against data-oriented programming attacks.

Data-flow integrity is a technique that instruments a program to protect data pointers

from being corrupted (Castro et al. 2006). The instrumentation enforces the inher-

ent data-flow of the program through pointer analysis—similar to how control-flow

integrity forces a program to adhere to its static control-flow graph (Abadi et al.

2005). This is a general protection against data-only attacks and has not been tested

specifically against DOP attacks. One of the drawbacks of this general technique is

that it is computationally expensive to track all relevant data pointers in a program

(incurs between 43%–104% overhead).

Specific defenses for DOP focus on embedded architectures and employ hardware

assistance to reduce overhead. “HardScope” is hardware-assisted run-time scope en-

forcement for the RISC-V architecture (Nyman et al. 2017). This methodology mit-

igates DOP attacks by enforcing the lexical scope of variables at runtime. Another

44

defense called Operation Execution Integrity targets ARM-based embedded platforms

(Sun et al. 2018). Operation Execution Integrity is an attestation method to mit-

igate both data-only and control-flow attacks. This security property verifies the

control-flow and data integrity of a program at the operation level. Operation ver-

sus whole-program scope reduces overhead. Data integrity is also limited to “critical

variables” which are automatically detected or manually identified. This also reduces

overhead.

5.2 Future Work

Improvements to this methodology and implementation include complex data-oriented

gadget verification. This work focuses on verifying gadgets with basic semantics. This

was a practical decision as it is difficult to stitch together complex gadgets as they

may have many side effects. However, for the complete analysis of gadgets in general

binaries this work can be extended to handle gadgets with an arbitrary number of

parameters and semantics.

To support complex gadget classification, Doggie should incorporate improved

type and pointer recovery for gadget parameters. As shown in the case studies in

Section 4.4, Doggie sometimes fails at correctly identifying gadget parameters. Ad-

vanced variable recovery techniques for binary programs (such as Balakrishnan &

Reps (2010) and Lee et al. (2011)) may help Doggie more accurately identify gad-

gets parameters which in turn improves classification.

Other future work includes automating DOP exploit generation. After classifying

gadgets and determining their reachability with respect to a vulnerable function, an

attacker tests the “stitchability” of gadgets. Stitchability determines if the execution

of one gadget flows into the execution of a subsequent gadget. So far, this is a manual

process discovered through repeated execution of the program with combinations

45

of gadget sequences. An automated solution for testing stitchability can include a

combination of symbolic and dynamic execution to test if two or more data-oriented

gadgets can be executed in sequence.

Additionally, the verification methodology can be used as the basis of a formalism

for modeling data-oriented programming attacks in general. Such a model can be

studied to identify the necessary and sufficient properties of a general binary program

to be vulnerable to this class of exploit.

46

Bibliography

Abadi, M., Budiu, M., Erlingsson, U. & Ligatti, J. (2005), Control-flow integrity,

in ‘Proceedings of the 12th ACM Conference on Computer and Communications

Security’, CCS ’05, ACM, New York, NY, USA, pp. 340–353.

URL: http://doi.acm.org/10.1145/1102120.1102165

Aho, A., Lam, M., Sethi, R. & Ullman, J. (2006), Compilers: Principles, Techniques,

and Tools, 2 edn, Pearson/Addison Wesley.

Andersen, S. & Abella, V. (2004), ‘Data execution prevention. Changes to function-

ality in Microsoft Windows XP service pack 2, part 3: Memory protection tech-

nologies.’. Viewed 31 March 2017.

URL: https://technet.microsoft.com/en-us/library/bb457155.aspx

Balakrishnan, G. & Reps, T. (2010), ‘WYSINWYX: What you see is not what you

execute’, ACM Trans. Program. Lang. Syst. 32(6), 23:1–23:84.

URL: http://doi.acm.org/10.1145/1749608.1749612

Bittau, A., Belay, A., Mashtizadeh, A., Mazières, D. & Boneh, D. (2014), Hacking

blind, in ‘Proceedings of the 2014 IEEE Symposium on Security and Privacy’, SP

’14, IEEE Computer Society, Washington, DC, USA, pp. 227–242.

URL: http://dx.doi.org/10.1109/SP.2014.22

Bletsch, T., Jiang, X., Freeh, V. W. & Liang, Z. (2011), Jump-oriented programming:

A new class of code-reuse attack, in ‘Proceedings of the 6th ACM Symposium on

47

Information, Computer and Communications Security’, ASIACCS ’11, ACM, New

York, NY, USA, pp. 30–40.

URL: http://doi.acm.org/10.1145/1966913.1966919

Bosman, E. & Bos, H. (2014), Framing signals - a return to portable shellcode, in

‘2014 IEEE Symposium on Security and Privacy’, pp. 243–258.

Brumley, D., Wang, H., Jha, S. & Song, D. (2007), Creating vulnerability signatures

using weakest preconditions, in ‘Proceedings of the 20th IEEE Computer Security

Foundations Symposium’, CSF ’07, IEEE Computer Society, Washington, DC,

USA, pp. 311–325.

URL: https://doi.org/10.1109/CSF.2007.17

Carlini, N. & Wagner, D. (2014), Rop is still dangerous: Breaking modern defenses,

in ‘Proceedings of the 23rd USENIX Conference on Security Symposium’, SEC’14,

USENIX Association, Berkeley, CA, USA, pp. 385–399.

URL: http://dl.acm.org/citation.cfm?id=2671225.2671250

Castro, M., Costa, M. & Harris, T. (2006), Securing software by enforcing data-flow

integrity, in ‘Proceedings of the 7th Symposium on Operating Systems Design and

Implementation’, OSDI ’06, USENIX Association, Berkeley, CA, USA, pp. 147–

160.

URL: http://dl.acm.org/citation.cfm?id=1298455.1298470

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H. & Winandy, M.

(2010), Return-oriented programming without returns, in ‘Proceedings of the 17th

ACM Conference on Computer and Communications Security’, CCS ’10, ACM,

New York, NY, USA, pp. 559–572.

URL: http://doi.acm.org/10.1145/1866307.1866370

Chen, S., Xu, J., Sezer, E. C., Gauriar, P. & Iyer, R. K. (2005), Non-control-data

48

attacks are realistic threats, in ‘Proceedings of the 14th Conference on USENIX

Security Symposium - Volume 14’, SSYM’05, USENIX Association, Berkeley, CA,

USA, pp. 1–15.

URL: http://dl.acm.org/citation.cfm?id=1251398.1251410

Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S., Grier,

A., Wagle, P. & Zhang, Q. (1998), StackGuard: Automatic adaptive detection

and prevention of buffer-overflow attacks, in ‘Proceedings of the 7th Conference

on USENIX Security Symposium - Volume 7’, SSYM’98, USENIX Association,

Berkeley, CA, USA, pp. 1–15.

URL: http://dl.acm.org/citation.cfm?id=1267549.1267554

CVE (2018), ‘CVE: Common vulnerabilities and exposures’. Viewed 16 April 2018.

URL: https://cve.mitre.org

De Moura, L. & Bjørner, N. (2008), Z3: An efficient SMT solver, in ‘Proceedings of

the Theory and Practice of Software, 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems’, TACAS’08/ETAPS’08,

Springer-Verlag, Berlin, Heidelberg, pp. 337–340.

URL: http://dl.acm.org/citation.cfm?id=1792734.1792766

Dijkstra, E. W. (1976), A Discipline of Programming, 1st edn, Prentice Hall PTR,

Englewood Cliffs, NJ, USA.

Flanagan, C. & Saxe, J. B. (2001), Avoiding exponential explosion: Generating com-

pact verification conditions, in ‘Proceedings of the 28th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages’, POPL ’01, ACM, New York,

NY, USA, pp. 193–205.

URL: http://doi.acm.org/10.1145/360204.360220

Göktas, E., Athanasopoulos, E., Bos, H. & Portokalidis, G. (2014), Out of control:

49

Overcoming control-flow integrity, in ‘Proceedings of the 2014 IEEE Symposium

on Security and Privacy’, SP ’14, IEEE Computer Society, Washington, DC, USA,

pp. 575–589.

URL: http://dx.doi.org/10.1109/SP.2014.43

Hu, H., Chua, Z. L., Adrian, S., Saxena, P. & Liang, Z. (2015), Automatic generation

of data-oriented exploits, in ‘24th USENIX Security Symposium (USENIX Security

15)’, USENIX Association, Washington, D.C., pp. 177–192.

URL: https://www.usenix.org/conference/usenixsecurity15/technical-

sessions/presentation/hu

Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P. & Liang, Z. (2016), Data-

oriented programming: On the expressiveness of non-control data attacks, in ‘2016

IEEE Symposium on Security and Privacy (SP)’, pp. 969–986.

Kiriansky, V., Bruening, D. & Amarasinghe, S. P. (2002), Secure execution via pro-

gram shepherding, in ‘Proceedings of the 11th USENIX Security Symposium’,

USENIX Association, Berkeley, CA, USA, pp. 191–206.

URL: http://dl.acm.org/citation.cfm?id=647253.720293

Lattner, C. & Adve, V. (2004), Llvm: A compilation framework for lifelong pro-

gram analysis & transformation, in ‘Proceedings of the International Symposium

on Code Generation and Optimization: Feedback-directed and Runtime Optimiza-

tion’, CGO ’04, IEEE Computer Society, Washington, DC, USA, pp. 75–.

URL: http://dl.acm.org/citation.cfm?id=977395.977673

Lee, J., Avgerinos, T. & Brumley, D. (2011), TIE: principled reverse engineering of

types in binary programs, in ‘Proceedings of the Network and Distributed System

Security Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th

50

February 2011’.

URL: http://www.isoc.org/isoc/conferences/ndss/11/pdf/5 3.pdf

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,

Reddi, V. J. & Hazelwood, K. (2005), Pin: Building customized program analysis

tools with dynamic instrumentation, in ‘Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation’, PLDI ’05,

ACM, New York, NY, USA, pp. 190–200.

URL: http://doi.acm.org/10.1145/1065010.1065034

Nyman, T., Dessouky, G., Zeitouni, S., Lehikoinen, A., Paverd, A., Asokan, N. &

Sadeghi, A.-R. (2017), ‘Hardscope: Thwarting DOP with hardware-assisted run-

time scope enforcement’, CoRR abs/1705.10295.

URL: https://arxiv.org/abs/1705.10295

Pax Team (2003a), ‘Address space layout randomization (aslr)’. Viewed 31 March

2017.

URL: https://pax.grsecurity.net/docs/aslr.txt

Pax Team (2003b), ‘PaX non-executable pages design and implementation’. Viewed

31 March 2017.

URL: https://pax.grsecurity.net/docs/noexec.txt

Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A. R. & Holz, T. (2015),

Counterfeit object-oriented programming: On the difficulty of preventing code

reuse attacks in c++ applications, in ‘2015 IEEE Symposium on Security and

Privacy’, pp. 745–762.

Schwartz, E. J., Avgerinos, T. & Brumley, D. (2011), Q: Exploit hardening made easy,

in ‘Proceedings of the 20th USENIX Conference on Security’, SEC’11, USENIX

51

Association, Berkeley, CA, USA.

URL: http://dl.acm.org/citation.cfm?id=2028067.2028092

Shacham, H. (2007), The geometry of innocent flesh on the bone: Return-into-libc

without function calls (on the x86), in ‘Proceedings of the 14th ACM Conference

on Computer and Communications Security’, CCS ’07, ACM, New York, NY, USA,

pp. 552–561.

URL: http://doi.acm.org/10.1145/1315245.1315313

Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C. & Vigna, G. (2015), Firmalice -

Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware,

in ‘Proceedings of the 2015 Network and Distributed System Security Symposium’.

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A., Grosen,

J., Feng, S., Hauser, C., Kruegel, C. & Vigna, G. (2016), SoK: (State of) The Art

of War: Offensive Techniques in Binary Analysis, in ‘IEEE Symposium on Security

and Privacy’.

Sun, Z., Feng, B., Lu, L. & Jha, S. (2018), ‘OEI: operation execution integrity for

embedded devices’, CoRR abs/1802.03462.

URL: http://arxiv.org/abs/1802.03462

US-CERT (2014), ‘OpenSSL ‘Heartbleed’ vulnerability (CVE-2014-0160)’. Viewed

17 February 2017.

URL: https://www.us-cert.gov/ncas/alerts/TA14-098A

Vu, D. H. (2013), ‘Analysis of nginx 1.3.9/1.4.0 stack buffer overflow and x64

exploitation (CVE-2013-2028)’. Viewed 1 June 2018.

URL: https://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-

2013-2028.html

52

Weiser, M. (1981), Program slicing, in ‘Proceedings of the 5th international conference

on Software engineering’, IEEE Press, pp. 439–449.

53

Appendix A

Source code for Algorithms and

Formalisms

A.1 Source code for Listing 3.1, SetRelevantVariables()

The implementation in Listing A.1 differs from the pseudocode to explicitly handle

when a VEX-IR statement defines a temporary variable versus a register. Lines 4 and

10 demarcate these two cases. Because of this, the object relevant maps a statement

ID to a pair that denotes type (either temporary variable or register offset) and the

associated value (temporary variable integer identifier or register offset number).

54

1 def setRelevantVariables(irsb, relevant, targetId):

2 for stmtId, stmt in enumerate(irsb.statements):

3 if stmtId < targetId:

4 if isinstance(stmt, pyvex.IRStmt.WrTmp):

5 # If stmt defines relevant variable of proceeding stmt

6 if (’tmp’, stmt.tmp) in relevant[stmtId + 1]:

7 relevant[stmtId].add((’tmp’, stmt.tmp))

8 # check if it is a Get reg expr

9 if isinstance(stmt.data, pyvex.expr.Get):

10 # add offset to relevant set

11 relevant[stmtId].add((’offset’, stmt.data.offset))

12 for t in getTmpsFromRHS(stmt):

13 relevant[stmtId].add((’tmp’, t))

14 # If stmt does not define relevant variable of proceeding

stmt

15 else:

16 # ...then add that variable to proceeding stmt’s

relevant variables

17 relevant[stmtId + 1].add((’tmp’, stmt.tmp))

18 # Same procedure for Put stmt’s but checking offsets

19 elif isinstance(stmt, pyvex.IRStmt.Put):

20 if (’offset’, stmt.offset) in relevant[stmtId + 1]:

21 relevant[stmtId].add((’offset’, stmt.offset))

22 if isinstance(stmt.data, pyvex.expr.Get):

23 relevant[stmtId].add((’offset’, stmt.data.offset))

24 for t in getTmpsFromRHS(stmt):

25 relevant[stmtId].add((’tmp’, t))

26 else:

27 relevant[stmtId + 1].add((’offset’, stmt.offset))

28 return relevant

Listing A.1: Python source code for pseudocode in Listing 3.1.

55

A.2 Source code for Listing 3.2, BackwardProgram-

Slice()

The implementation in Listing A.2 differs from the pseudocode to explicitly handle

when a VEX-IR statement defines a temporary variable versus a register. Lines 7 and

10 demarcate these two cases. Because of this, the object relevant maps a statement

ID to a pair that denotes type (either temporary variable or register offset) and the

associated value (temporary variable integer identifier or register offset number).

1 def makeBackwardSlice(irsb, targetId):

2 relevant = initRelevantVariables(irsb, targetId)

3 relevant = setRelevantVariables(irsb, relevant, targetId)

4 pslice = []

5 for stmtId, stmt in enumerate(irsb.statements):

6 if stmtId < targetId:

7 if isinstance(stmt, pyvex.IRStmt.WrTmp):

8 if (’tmp’, stmt.tmp) in relevant[stmtId + 1]:

9 pslice.append(stmtId)

10 elif isinstance(stmt, pyvex.IRStmt.Put):

11 if (’offset’, stmt.offset) in relevant[stmtId + 1]:

12 pslice.append(stmtId)

13 return pslice

Listing A.2: Python source code for pseudocode in Listing 3.2.

A.3 Source code for Listing 3.3, BDFA()

The implementation in Listing A.3 differs from the pseudocode to explicitly handle

when a VEX-IR statement defines a temporary variable versus a register. Lines 5

and 23 demarcate these two cases.

56

1 def BDFA(v, bslice, istack, statements):

2 if not bslice:

3 return

4 i = bslice.pop()

5 if isinstance(statements[i], pyvex.IRStmt.WrTmp):

6 if v[0] == ’tmp’:

7 if statements[i].tmp == v[1]:

8 subseq = [i]

9 if isinstance(statements[i].data, pyvex.expr.Get):

10 substack = []

11 BDFA((’offset’, statements[i].data.offset), bslice,

substack, statements)

12 subseq += substack

13 else:

14 rhs = getTmpsFromRHS(statements[i])

15 for t in rhs:

16 substack = []

17 rbslice = list(bslice)

18 BDFA((’tmp’, t), rbslice, substack, statements)

19 subseq += substack

20 istack += subseq

21 else:

22 BDFA(v, bslice, istack, statements)

23 elif isinstance(statements[i], pyvex.IRStmt.Put):

24 if v[0] == ’offset’:

25 if statements[i].offset == v[1]:

26 rhs = getTmpsFromRHS(statements[i])

27 subseq = [i]

28 for t in rhs:

29 substack = []

30 BDFA((’tmp’, t), bslice, substack, statements)

31 subseq += substack

32 istack += subseq

33 else:

34 BDFA(v, bslice, istack, statements)

Listing A.3: Python source code for pseudocode in Listing 3.3.

57

A.4 Source code for Listing 3.4, GetGadget()

The implementation in Listing A.4 repeats logics for the “address” and “data” pa-

rameters of the target Store instruction. Function isInteresting() checks if an

instruction stack contains at least one Load statement (i.e., a viable gadget).

58

1 def getGadget(stmt_idx, stmt, irsb):

2 bslice = makeBackwardSlice(irsb, stmt_idx)

3

4 # Dictionary of lists to hold interesting instruction stacks

5 stackd = defaultdict(list)

6

7 astack = [] # Instruction stack from stmt.addr.tmp

8 tmpslice = list(bslice)

9 try:

10 BDFA((’tmp’, stmt.addr.tmp), tmpslice, astack, irsb.statements)

11 # Removing duplicates from instruction stack

12 # Don’t care about preserving order since it is always descending

anyways

13 astackSet = set(astack)

14 astack = list(astackSet)

15 astack.sort(reverse=True)

16 except AttributeError as e:

17 pass

18

19 dstack = [] # Instruction stack from stmt.data.tmp

20 tmpslice = list(bslice)

21 try:

22 BDFA((’tmp’, stmt.data.tmp), tmpslice, dstack, irsb.statements)

23 # Removing duplicates from instruction stack

24 # Don’t care about preserving order since it is always descending

anyways

25 dstackSet = set(dstack)

26 dstack = list(dstackSet)

27 dstack.sort(reverse=True)

28 except AttributeError as e:

29 pass

30

31 if (isinstance(stmt.addr, pyvex.expr.Const) or (isInteresting(astack,

irsb))

32 and isInteresting(dstack, irsb)):

33 stackd[’addr’] = astack

34 stackd[’data’] = dstack

35

36 return stackd

Listing A.4: Python source code for pseudocode in Listing 3.4.

59

A.5 Source code for Listing 3.6, GetPotentialGadgets()

The implementation in Listing A.5 uses built-in functions from the angr binary pro-

gram analysis framework to recover functions and loops from a binary and traverse

those data structures.

1 # For each function in the program (determined by CFG)

2 for f in cfg.kb.functions.values():

3

4 # Find loops in this function

5 loops = proj.analyses.LoopFinder(functions=[f])

6

7 # For each loop in this function

8 for loop in loops.loops:

9

10 isInterestingLoop = False

11 # For each basic block in the function

12 for n in loop.body_nodes:

13

14 # Grab the VEX-IR super block from this address

15 irsb = proj.factory.block(n.addr).vex

16

17 for stmt_idx, stmt in enumerate(irsb.statements):

18 # Looking for STOREs

19 if isinstance(stmt, pyvex.IRStmt.Store):

20 instr_stack = getGadget(stmt_idx, stmt, irsb)

21 potGadgets.append(Gadget(set(), set(),

angr.analyses.code_location.CodeLocation(n.addr,

stmt_idx), instr_stack, f.addr, loop))

22

23 # Also check for CALLS in the loop and follow them through

24 followSuccessors([], n.addr, f.addr, cfg, potGadgets, loop)

Listing A.5: Python source code for pseudocode in Listing 3.6.

A.6 Source code for computing Weakest Precon-

dition of a GCL-like program

60

1 def WP(prog, Q, M, R, t, stmts, proj):

2 while prog:

3 cmd = stmts[prog.pop()]

4 if isinstance(cmd, pyvex.IRStmt.Store):

5 data = cmd.data.tmp

6 addr = None

7 if isinstance(cmd.addr, pyvex.expr.RdTmp):

8 addr = t[cmd.addr.tmp]

9 elif (isinstance(cmd.addr, pyvex.expr.Const) and

isGlobalVariable(cmd.addr.con.value,

proj.loader.main_object.sections_map)):

10 addr = BitVecVal(cmd.addr.con.value, 32)

11 Q = substitute(Q, (M[addr], t[data]))

12 elif isinstance(cmd, pyvex.IRStmt.WrTmp):

13 if isinstance(cmd.data, pyvex.expr.Load):

14 src = None

15 if isinstance(cmd.data.addr, pyvex.expr.RdTmp):

16 src = t[cmd.data.addr.tmp]

17 elif (isinstance(cmd.data.addr, pyvex.expr.Const) and

isGlobalVariable(cmd.data.addr.con.value,

proj.loader.main_object.sections_map)):

18 src = BitVecVal(cmd.data.addr.con.value, 32)

19 Q = substitute(Q, (t[cmd.tmp], M[src]))

20 elif isinstance(cmd.data, pyvex.expr.Binop):

21 op1, op2 = cmd.data.args

22 binop = getOperatorType(cmd.data.op)

23 if comparisonOperator(cmd.data.op):

24 Q1 = Implies(binop(op1, op2), substitute(Q, (t[cmd.tmp],

BitVecVal(1, 32))))

25 Q2 = Implies(Not(binop(op1, op2)), substitute(Q,

(t[cmd.tmp], BitVecVal(0, 32))))

26 Q = And(Q1, Q2)

27 else:

28 Q = substitute(Q, (t[cmd.tmp], binop(op1, op2)))

29 elif isinstance(cmd.data, pyvex.expr.Get):

30 Q = substitute(Q, (t[cmd.tmp], R[cmd.data.offset]))

31 elif isinstance(cmd.data, pyvex.expr.RdTmp):

32 Q = substitute(Q, (t[cmd.tmp], t[cmd.data.tmp]))

33 elif isinstance(cmd, pyvex.IRStmt.Put) and isinstance(cmd.data,

pyvex.expr.RdTmp):

34 Q = substitute(Q, (R[cmd.offset], t[cmd.data.tmp]))

35 return Q

Listing A.6: Python implementation for computing weakest precondition according
to the semantics in Figure 3.2.

61

